

Degree Works
Technical Guide

Release 5.0.3.1
March 2020

Notices
© 1999-2020 Ellucian.

Contains confidential and proprietary information of Ellucian and its subsidiaries. Use of these
materials is limited to Ellucian licensees, and is subject to the terms and conditions of one or
more written license agreements between Ellucian and the licensee in question.

In preparing and providing this publication, Ellucian is not rendering legal, accounting, or other
similar professional services. Ellucian makes no claims that an institution's use of this
publication or the software for which it is provided will guarantee compliance with applicable
federal or state laws, rules, or regulations. Each organization should seek legal, accounting,
and other similar professional services from competent providers of the organization's own
choosing.

Ellucian's Privacy Statement is available at: www.ellucian.com/privacy.

Ellucian shall have the right to (a) use, store, process, modify, reproduce, distribute and display
customer data, and to grant sublicenses to third parties, for the sole purposes of providing the
software, performing Ellucian's obligations under its agreements with customers and complying
with applicable law or legal requirements; (b) use, store, process, modify and reproduce customer
data for Ellucian's internal business purposes, including development, diagnostic, forecasting,
planning, analysis and corrective purposes in connection with the software, and for otherwise
improving and enhancing the software; and (c) use, store, process, modify, reproduce, display,
perform, distribute, disclose and otherwise exploit in any manner Aggregated Data for Ellucian's
business purposes, including disclosure within its public statements and marketing materials
describing or promoting Ellucian or the software. “Aggregated Data” means any data obtained or
generated by Ellucian, including data pertaining to the software, Ellucian's systems and software,
and the use of any of the foregoing, and includes data derived from customer data, which in all
instances (i) does not identify any individual and (ii) is not attributed or attributable to a specific
customer. Aggregated Data includes data that has been combined into databases which include
third party data.

Ellucian
2003 Edmund Halley Drive
Reston, VA 20191
United States of America

https://www.ellucian.com/privacy

Degree Works | Technical Guide 5.0.3.1 3

Contents

Notices .. 1

Introduction .. 8

Document Organization.. 8

Overview .. 8

Degree Requirements ... 10

Auditor Engine .. 11

Output Engine ... 14

Scribe ... 14

Transfer Equivalency .. 14

Transit .. 14

Degree Works Dashboard .. 15

Curriculum Planning Assistant ... 15

Controller ... 15

Glossary ... 16

Special Topics .. 21

Adding Custom Data Items .. 21

Adding NonCourse Data Items .. 22

Additional Advisee Filtering .. 23

Degree Works Bridge.. 24

 Degree Works | Technical Guide 5.0.3.1 4

Equivalent Course Tracking .. 27

Financial Aid Audit .. 36

Athletic Eligibility Audit .. 45

Freezing Audits ... 67

GPA Calculations .. 70

Redemption Algorithm ... 70

Too Many Classes on a Rule ... 71

Match Level .. 72

Fit Rank .. 72

Group Procesing ... 73

Removing classes when too many fit on a rule ... 74

Evaluating Classes on a Rule .. 75

In-progress vs Completed .. 77

Logging Degree Works Errors ... 77

Multi-entity Processing... 80

Percent Complete Calculation ... 88

Repeated Classes ... 90

SOC Report Format ... 92

Split Credits ... 110

Transfer Courses .. 115

Web Interface - Tool and Audits ... 116

Overview .. 116

 Degree Works | Technical Guide 5.0.3.1 5

Degree Works Web Localizations ... 117

What-if Configuration ... 159

Course Link ... 161

Showing Title/Credits as Hint .. 166

Financial Aid Audits .. 167

Exception Management .. 168

Exception Types .. 170

Degree Works Accessibility Compliance (Section 508, ADA and WCAG) 175

Web Server Components ... 175

Other Configuration Options ... 175

Database Tables ... 178

Introduction ... 178

dap Tables ... 178

rad Tables .. 179

shp Tables ... 180

sep Tables .. 181

Transit Tables .. 181

Special Scripts ... 182

List of Scripts used by Degree Works .. 182

changepassword ... 187

convertplans .. 187

converttemplates .. 192

 Degree Works | Technical Guide 5.0.3.1 6

dapauditstopdffiles ... 197

dapauditstoxmlfiles .. 198

dapauditstoxml .. 198

dapblockinsert ... 199

dapfindbadaudits .. 200

dapfindorphanedaudits .. 201

dapmapcopy .. 202

dbbuild ... 203

dwsettings ... 203

getxmlaudit .. 205

launchjob ... 205

packdebug ... 205

profiledbg ... 206

sharegen .. 207

shareinfo .. 209

Degree Works Security Options ... 210

HTTPS/SSL .. 210

Authentication ... 211

Access Control (Authorization) ... 221

Database Privileges .. 237

Encrypted Data .. 237

System Administration .. 238

 Degree Works | Technical Guide 5.0.3.1 7

Degree Works Flow Diagram ... 238

Degree Works Web Applications ... 239

Degree Works and Your Student Data .. 241

Maintaining Degree Works ... 242

Customizing Degree Works source code ... 254

Degree Works Standing Daemons .. 255

Check on Running Jobs ... 258

Degree Works Troubleshooting .. 260

Backup issues ... 264

Load Balancing .. 265

Classic Load Balancing .. 265

Containerized Java Application Load Balancing ... 266

Standalone Java Application Load Balancing ... 266

System Performance ... 268

Configuring the Database Server .. 269

Java Database Pooling Configuration .. 269

Classic Web Performance .. 270

Batch Processing Performance ... 275

Custom Indexes .. 275

 Degree Works | Technical Guide 5.0.3.1 8

Introduction

Document Organization
This Degree Works Technical Guide has been divided into the following sections:

Introduction. The Introduction provides you with a general impression of how the software
works, how the various pieces are interconnected, and explains special topics in a focused
manner.

Special Topics. The Special topics section discusses a variety of topics that are required to help
you use Degree Works effectively.

Scribe. The Scribe User Guide documentation explains how to enter degree requirements using
the Degree Works language and Scribe application.

Web Interface. The Degree Works on the Web documentation explains how users can process
degree audits, exceptions, and notes.

Database Tables. The list and descriptions of all tables used within Degree Works.

Special Scripts. This section lists the tools that usually are not accessed through a user
interface. These scripts are used in conjunction with other processes or are used for very special
purposes and should only be used by your IT staff.

Security. The security options available within Degree Works.

Central Authentication Service single sign-on. This section details the Central Authentication
Service (CAS) that can be used to integrate Degree Works with portals and other Web
applications.

System Administration. The various tasks that are required to administer Degree Works.

System Performance. This section provides information about system performance
management, configuration options to manage performance, and troubleshooting guidelines.

Overview
The Degree Works product allows an institution to automate the degree auditing and student
advising processes. It provides a means and method for entering degree requirements from a
college catalog into the computer and analyzes a student's academic progress, providing output
stating what institutional requirements have been met, and what still needs completion.

The users of the requirement definition input process may include registrar's staff, academic
administrators, and data center technical staff. The consumers of the results of the degree audit
process will represent an even wider spectrum, including students, admission applicants,
academic advisors, academic administrators, and registrar's staff.

This wide range of client types was an important operative consideration in the design of Degree
Works.

 Degree Works | Technical Guide 5.0.3.1 9

The goals of the Degree Works design are:

1. Provide accurate information for students and advisors about degree progress.

2. Provide easy-to-read advisory format.

3. Provide easy-to-use requirement building process.

4. Provide powerful language for requirements definition.

5. Provide robust exception management.

6. Provide security for access.

7. Generate a cogent description of all degree requirements.

8. Report requirements that have been satisfied and those that are yet to be completed in a
concise manner with 100% accuracy (where accuracy means that a student's courses
are applied to appropriate requirements).

9. Inform the registrar that degree requirements are nearing completion or are completed.

10. Provide "what if" capability for on-line viewing of potential evaluations for changes of
degree, major, minor, concentration, or placement evaluation for new transfer students.

11. Provide fast and efficient processing of evaluations.

12. Generate individual and institutional-level output, such as requirements worksheets and
course demand data.

13. Include query capability for students through a campus network.

14. Be versatile and provide configuration settings to handle opposing client requests.

15. Provide robust exception handling, including but not limited to, the definition of custom
requirements for a student.

A Degree Works language consisting of certain keywords and syntactical rules is used to define
institutional requirements into the computer. The institutional requirements are entered using a
program called Scribe, resulting in a series of requirement blocks. These blocks are then read
by the first of the two Degree Works processing engines, the Parser Engine. The Parser Engine
validates the requirement blocks, assuring they are lexically and syntactically correct so that they
may be properly interpreted by the Auditor Engine.

The second Degree Works processing engine is the Auditor Engine. The Auditor Engine
reconciles student academic data from the student information system with the requirement
blocks that have been built by users and then validated by the Parser Engine. The Auditor Engine
actually evaluates the student course data against the appropriate requirement blocks,
determining which academic requirements have been satisfied and which await completion. The
audit results are stored in a database for reporting and review by the institutional staff.

The third Degree Works processing engine is the Output Engine. The Output Engine interprets
the audit results and produces printed and online audit reports. Online viewing of audit results is
accomplished using Degree Works on the Web, which may be made available to Registrar,
faculty or students. It is through Degree Works on the Web that exceptions and substitutions are
entered as well as advisor notes. Security to control "who accesses what" is enforced by Degree
Works on the Web.

DAP, Degree Audit Process, is an abbreviation used internally for Degree Works. The database
name is "dabdb" and the program names begin with "DAP". Throughout this document, "DAP"
may used as shorthand for "Degree Works". Compared to prior versions of "DAP", Degree
Works is focused on developing a user-friendly language and robust Parser Engine to articulate
the wide range of academic requirements among institutions of higher education. Concentrated
efforts were made to construct an Auditor Engine flexible enough to evaluate consistently a wide

 Degree Works | Technical Guide 5.0.3.1 10

range of diverse institutional procedures and policies. Finally, improvements have been made to
the screen interface and hard-copy output in order to better meet the auditing and advising needs
of end-users.

Degree Requirements
The Parser Engine translates the requirements language into a format to be used for audit. The
Parser Engine is a program called Dapparse (DAP13) with the following characteristics:

- Resides on the host computer
- Accepts files of requirements (created with Scribe)
- Parses requirements, i.e. translates the rules into syntax and remarks files
- Catches errors by validating disciplines and courses
- Returns error files if any errors are encountered during the parse
- Stores the syntax and remarks files on the host computer
- The parsed text is saved in the DAP database on the host computer

Scribe is the input mechanism for entering degree requirements. You can either enter the
requirements yourself or contract with Ellucian to enter them for you. In either case, you must
gather together the course catalogs and other documents that define your institution's degree
requirements.

Requirement Blocks
Degree Works stores requirements in requirement blocks. Blocks are user-defined and are likely
to include degree, major, minor, and concentration, but may also include sets of requirements
that are unique to an institution (e.g., community service). The blocks will not necessarily be
hierarchical, and links among blocks may be established but are not required. The order of the
blocks and the linkages between the blocks are determined by the user. There is no limit to the
number of blocks that may be used to construct the requirements for a degree program.

Degree Works determines which blocks to use for a particular student by checking standard data
on the student record for degree, major, minor, or concentration, or by client-defined data on the
student record to indicate special activities or programs (e.g., ROTC). Blocks may be global as
well (e.g., general education), so a link to student data may not be required.

Users are able to define the relationships among requirement blocks. Some will be sequential
and hierarchical; some will be linked one to another (e.g., a concentration that cannot exist
without an associated major); some will be conditional on student data that will determine blocks
and point to other blocks (e.g., ROTC); and some will be isolated and required of all students
regardless of their characteristics (e.g., a requirement that all students perform some kind of
community service).

The requirement blocks may be defined for student attributes which may include school, college,
department, major, minor, concentration, location, catalog year, and other client-defined
characteristics. Custom sets of requirements by student may also be defined.
Unlimited courses are allowed within requirement blocks and unlimited nesting of requirements is
allowed within a block.

The Scribe language for defining requirements lets users specify requirements by number of
classes, by number of credits, or by a combination of both.

 Degree Works | Technical Guide 5.0.3.1 11

The definition of courses that can be taken to fulfill a requirement rule allows for the robust use of
the wildcard (@) and also for use of a range operator (:) for course numbers. The wildcard (@)
indicates one or more occurrences of any character.

Example: MATH@ = all classes in the discipline MATH
Example: MATH1@ = all classes in the discipline MATH were the first digit of the course
number is a "1"
Example: MATH100:199 indicates all courses from MATH100 through MATH199.

The definition of that portion of the course key that indicates the course discipline may require the
use of a delimiter. If no course delimiter is specified then Degree Works assumes discipline is an
alpha code.

Example: ART1200 = ART
Example: ART1 200 = ART1
Example: ARTA200 = ARTA
Example: ART A200 = ART

Degree Works allows for non-course requirements. These requirements may include theses,
performances, attendance at required events, work experiences and should be allowed
individually, in groups by student characteristics, or by requirement block.

There is an unlimited text capability for annotating the requirement blocks. This text can be used,
in whole or part, to provide readable reports where requirements are described. The text may
include comments internal to the requirement block or may be text for use on user reports.

Degree Works provides a mechanism for pointing multiple catalogs to the same requirement
block to avoid duplicating blocks when requirements do not change. This is accommodated by
identifying the catalog year as a range of begin/end years rather than as a single year.

Auditor Engine
The Auditor Engine reads the student's academic data, assembles the requirement blocks,
performs the audit, and stores the audit results in the DAP database. The Auditor Engine is a
program called Dapaudit (DAP14) with the following characteristics:

- Resides on the host computer
- Accepts student data from the host (degree data, class data)
- Accepts "what-if" student data from the end-user
- Selects requirement blocks to be audited based on the degree data
- Processes the audit using the audit algorithm and site-defined configuration settings
- Stores the audit results in the Degree Works database on the host computer

The following student data is passed to Degree Works from the student database. These
elements constitute the minimum data needed by the Auditor Engine but additional "custom" data
may also be passed to the Auditor for evaluation or subsequent inclusion on audit reports.

 Degree Works | Technical Guide 5.0.3.1 12

From the student course record:
ID
school
college
course discipline
course number
credits
grade (letter and number)
grade points (grade number * credits)
term
course type (resident, transfer)
grade type (regular, pass/fail)
credits type (e.g., academic, clep, ap)
location (site of class)
transfer xref (local course equivalence)
class status (added, dropped, withdrawn, repeated)

From the student academic record
ID
school
degree(s)
 catalog year
program(s)
 catalog year
college(s)
 catalog year
major(s)
 catalog year
minor(s)
 catalog year
concentration(s)
 catalog year
specialization(s)
 catalog year
liberal learning(s)
 catalog year
non-course requirement data
 (e.g., exams, performance, language, comments)
client-defined data (e.g., ROTC, religion)

From the course catalog record:
course discipline
course number
catalog year
course equivalents

Student data drives the Auditor Engine. There are standard characteristics that would be
expected from any student database including degree, major(s), concentration(s), minor(s),
catalog year(s). There may be client-specific characteristics that also drive the Auditor Engine,
including (but not limited to) ROTC and religion.

Requirement blocks are assembled for processing by searching for blocks that match student
attributes, looking first for the degree block. Blocks are matched first by ID. If no blocks matched
by ID, other student attributes are combined to find blocks with matching attributes. Configuration
settings control the processing of the requirements.

The Auditor Engine matches all resident courses, transfer courses, and non-course activities to
the requirement blocks that have been assembled. Resident courses can be evaluated in the
context of the selected course catalog, taking into account changes in course identifiers (e.g.,
recycled courses/AKA's by catalog year). Courses may be excluded from analysis by the Auditor

 Degree Works | Technical Guide 5.0.3.1 13

Engine based on credit type or grade type, (e.g., academic bankruptcy classes or classes that do
not carry academic credits).

Degree Works can handle transfer courses that do not map directly to a resident course but do
map to a range of courses or to any course in a discipline. Direct equivalencies are not required,
for example, transfer courses that are different in credit value, courses that are a series of two at
one institution and three at another, or situations when course transfer will be allowed but no
direct equivalent exists.

Exception handling in Degree Works lets the user lock-in evaluation decisions so that any
subsequent running of an audit will not undo them. These decisions might include substitutions
of specific courses for specific requirements, waivers of classes, exemptions from certain credits
or requirements. Implicit in this is the option to "unlock" such decisions.

Degree Works supports an option to "split" credits from a single course and apply the remaining
credits to other requirements. This is done either through requirement definition in Scribe or
through a special kind of exception.

It is possible within Degree Works for the user to indicate that a requirement is complete using
Exceptions even when the Auditor Engine cannot complete it through.

Degree Works allows variations in the processing of repeated or retaken courses. Courses that
may be repeated for credit up to a maximum number of credits or courses must be counted
appropriately, and those courses may or may not be limited to one per term. Courses that may
not be repeated for credit but are repeated to improve a student's GPA can be identified and the
GPA can be calculated correctly. The rules for applying credits from repeated classes and the
rules for calculating GPA for repeated classes are site-defined within a set of repeat policies
provided by Degree Works.

For purposes of evaluation, the Auditor Engine assumes all courses are applied to requirements
in an exclusive manner, i.e., one class and the associated credits apply to one requirement. The
nonexclusive application of classes can then be specified with the appropriate limits. The range of
users' needs on this issue is great. It includes everything from "you can use anything wherever it
fits" to "you can't use anything twice". The middle ground is "no more than 10 credits that applied
toward the major requirements can also be applied toward minor requirements."

For the processing of student records against requirement data, the Auditor Engine uses a "best
fit" algorithm. To accomplish this, the Auditor Engine may have to perform a number of passes
through the course information. For example, on the first pass, all courses that fit a requirement
are placed. Classes that can be applied to multiple rules then needed to be weeded out, keeping
the "best fit". The fit is made against requirement blocks based on a client-defined order.

To identify those students nearing requirements completion, the Auditor Engine calculates the
overall percent complete and percent complete for each requirements block (e.g. Major, Minor)
The Notes capability in Degree Works provides unlimited text capabilities for recording notations
on the student's record. This includes, but is not limited to, special circumstances, advisor notes,
reasons for exceptions, who made decisions and when.

Grade Point Average is calculated overall and by requirement block. The cumulative GPA
calculated by Degree Works may be different from that calculated by the student system due to
Degree Works ability to process repeats and courses that exceed limits. Users have the ability to
exclude specific courses from block GPA calculations via the NOTGPA reserved word.

 Degree Works | Technical Guide 5.0.3.1 14

Output Engine
The Output Engine reads the audit results from the database amd formats the results into an XML
or JSON document. The Output Engine consists mainly of one subroutine, dapextract (DAP15)
with the following characteristics:

- Resides on the classic server
- Extracts the requested audit from the Degree Works database
- Formats the audit results as an XML or JSON tree

The presentation layer takes in the XML or JSON tree and formats it using XSL or some other
tool. In the Dashboard there are several Degree Works stylesheets that create audit worksheets
while in the Responsive Dashboard the react-js code creates the worksheets from the JSON
audit. In batch mode FOP is used to convert the XML trees into PDF.

Scribe
The Scribe Language is used to define the requirements rules. Each Reserved Word has rules
about its use.

The Scribe application is used to enter the degree requirements using the Scribe language. A
specialized "word processing" window is used to allow the user to enter the requirements using a
natural language. Templates in the help guide can be dragged-n-dropped into the edit window to
make rule creation easier. After entering the requirements, they are parsed for syntactical and
lexical errors. If no errors occur then the requirements are saved to the Degree Works database
with database "tags" that describe the degree requirements.

Transfer Equivalency
Transfer Equivalency is the Transfer Equivalency Coursework Articulation Data Entry Interface.
Transfer Equivalency is a module allowing schools to set up transfer equivalencies, enter transfer
course data from transfer transcripts, and articulate the transcripts against the mapping created
for each transfer institution. Transfer Equivalency interface has the following functions:

- create mappings of course equivalents from transfer institutions
- create transcript information for specific students, including courses and test scores.
- perform an articulation of classes processed.
- perform a degree audit on articulation results, audit classes in student system, and view
a degree audit report.

Transit
Transit provides a variety of batch reporting capabilities, including various audit reports, and
enrollment demand statistics. The Transit application is typically accessible only to authorized
registrar staff.

 Degree Works | Technical Guide 5.0.3.1 15

Degree Works Dashboard
The Degree Works Dashboard is used to perform the following functions while enforcing security
about who can execute which functions:

- run a new degree audit against the student's real academic data
- run a what-if audit against the student's requested academic data
- run a look ahead audit based on projected class data
- review a previous degree audit
- view audit results, selecting the desired output format
- view historic audits
- view student data audits for troubleshooting purposes
- exception management
- student academic planner function
- notes entry record
- enter petitions for exceptions
- GPA calculators.
- Student Educational Planner

Curriculum Planning Assistant
The CPA tool allows administrators a macro view of the student audit results. Audit results are
placed in the database in a format that may be queried using standard tools such as Crystal,
Hyperion, Cognos, etc. The audit results are placed in the dap_result_dtl table with class
records being stored in the dap_resclass_dtl and noncourse records being stored in
dap_resnoncr_dtl table.

You can use any SQL-complaint tool to access the CPA data. Reports are supplied as part of the
Ellucian ODS but no reports are supplied as part of the Degree Works toolset.

Please also see the Advanced Reporting Technical Guide for more information.

Controller
Controller is a web application used to manage user access to Degree Works functionality.
Typically, only a few staff members in the Registrar's or Information Technology office are
granted access. It allows users of Degree Works, to codify, store, maintain, and validate data
values and stores these values or codes in discrete units called Tables within an overall structure
called the Universal Code eXtension (UCX).

 Degree Works | Technical Guide 5.0.3.1 16

Glossary
This glossary presents terms that are used throughout this document. It is important that the
reader be introduced to these terms early so they are presented at the beginning of the
document. However, this section is also intended to be used as a reference while reading the
rest of the document.

The Scribe language consists of words that describe degree requirements. Many of the words
are "reserved" because they have a special meaning in the Scribe language. These reserved
words, also called keywords, are not case-sensitive. The examples in this document may show
the Scribe keywords in upper-case but mixed or lower-case is also acceptable.

The Scribe language is not dependent on indentation. The end-user should develop a consistent
style of indentation for readability. When Ellucian Scribes a catalog for a client, a consistent look
is delivered.

Throughout this document, optional letters and words appear within square brackets. For
example, CLASS[ES] means that either CLASS or CLASSES can be used -- both are valid in the
Scribe language.

In this glossary, words in italics refer to another entry in the glossary.

The basic components of the Scribe language are:

Block a set of degree requirements written in the Scribe language. Requirement

blocks are defined by the user. Most colleges will have blocks for degree,
major and minor. A block consists of a block header, followed optionally by
one or more rules or remarks, followed by "END.". Example: General
Education requirements consist of 6 credits of Math, 6 credits of English, 6
credits of a foreign language, and a maximum of 6 pass-fail credits. In the
Scribe language, this requirement is:

Begin
MaxPassFail 6 Credits
;
6 Credits In MATH @ Label “Math requirement”;
6 Credits In ENGL @ Label “English requirement”;
6 Credits In FRE @, GER @, SPA @, RUS @, CHI @
 Label “Language requirement”;
End.

Block Header contains the degree requirements that apply to all courses satisfying rules
in the block. Keywords in the block header describe the block as a whole
and are applied to the entire block, not to specific rules. The block header
is composed of the word BEGIN, followed by optional block qualifiers (such
as minimum grade, maximum transfer credits), followed by a semicolon.
Example:

Begin
MinGPA 2.0
MaxTransfer 30 Credits
;

Block Qualifier a Scribe keyword that describes a degree requirement that applies to all
courses satisfying rules in the block, such as minimum GPA or maximum
number of transfer courses. Each block header can have zero or more
block qualifiers. Example:

MaxTransfer 30 Credits

 Degree Works | Technical Guide 5.0.3.1 17

Block Type the primary database tag, a characteristic of the block. It describes what
kind of requirements are in the block. Examples:

degree=BA
major=MATH
minor=BUS.

In these examples, the block types are DEGREE, MAJOR, and MINOR
respectively. The block type values are BA, MATH, BUS respectively.

Client-defined
Code

a string of up to 12 alphanumeric characters that represents a valid value
for a piece of student data. A code is a shortened representation of a
literal, e.g. WA is the code for Washington state. Client-defined codes are
created by each Degree Works customer and are unique to the institution,
but are shared by all offices and staff across the institution.

Comment a string of free-text following a pound sign or exclamation point.
Comments are entered into a requirements block as an annotation that
explains something to the person maintaining the requirements block.
Comments are never printed on audit output -- they are for internal use
only. Example:
3 CREDITS IN BIO @; #doublecheck with biology department

Course List a list of required classes, where each class is represented by a course key.
Each course key consists of an academic discipline and a course number.
Either the discipline or the course number can include a wildcard symbol
(@). Example:

BIO 100, CHE 115, PHY 1@;

Custom Block a requirements block that is defined for non-standard student data or for a
specific student. A custom block either has a database tag of ID for a
particular student or has a block type of OTHER. Examples: custom
requirements for ID=12938593, requirements block for community service
(block type is OTHER and block type value is COMMSERV).

Custom Data non-standard student information. Custom data is not part of Degree
Works's standard data for a student but an institution may have degree
requirements that are based on non-standard student data. Examples:
ROTC, religion.

Database Tag a characteristic of the requirement block that is stored in the DAP
database. These characteristics are used to match the requirements to the
students. The database tags are: beginning catalog year, ending catalog
year, college, concentration, degree, student ID, liberal learning, major,
second major, minor, other, program, school, and specialization. One of
these database tags is designated by the user as the primary database
tag, the block type. The database tags are entered when the degree
requirements are added to the DAP database. They are related to the
Scribe language only because the language refers to BLOCKTYPE and
BLOCK, which tell the Auditor Engine which primary database tag to use
when finding a requirement block for a student.

Goal

A field of study (such as MAJOR, MINOR, PROGRAM). A student can
have a virtually unlimited number of goals stored on their student record in
Degree Works.

 Degree Works | Technical Guide 5.0.3.1 18

GPA Grade Point Average, sum of grade points divided by total graded credits
earned. The GPA is calculated to 3 decimal places, with a maximum of
999.999. Examples:

3.125, 2.5.

Integer a whole number between 0 and 999 inclusive. Examples:
1, 222, 35.

Keyword a Scribe reserved word. Scribe keywords are part of the Scribe language
and are restricted as to how they can be used. Examples:

Begin, MinGPA, MaxTransfer

Linked Block a requirements block referenced in another block (in a BLOCK rule). The
requirements in the linked block are later added by the Auditor Engine in
place of the BLOCK rule. A linked block is useful when requirements need
to be repeated in multiple blocks. For example, if both the Bachelor of Arts
degree and the Bachelor of Science degree have the same foreign
language requirements then three Scribe blocks could be created:

Begin
120 Credits;
Bachelor of Arts degree requirements block
6 Credits In ART @;
1 Block (OTHER=FORLANG);
End.

Begin
126 Credits;
Bachelor of Science degree requirements block
6 Credits In MATH @;
1 Block (OTHER=FORLANG);
End.

Begin
MinGrade 2.0;
Foreign language requirements block
6 Credits In FRE @, GER @, SPA @, RUS @, CHI @;
End.

Non-course a degree requirement, such as a recital, chapel, test, or thesis, that is not a
course for which a student registers but whose completion is recorded in
the student information system. Example:

1 NonCourse (RECITAL).

Real a number between 0 and 999.999 inclusive. A real number is either an
integer or an integer followed by a decimal point and up to 3 decimal digits.
The decimal point is only required if there is a number after the decimal
point. Examples:

1, 2.0, 3.125, 25.375, 120.001.

 Degree Works | Technical Guide 5.0.3.1 19

Relational
Operator

a character that signifies comparison of two values. In the Scribe
language, relational operators are:

= (equal),
> (greater than),
< (less than),
>= (greater than or equal),
<= (less than or equal),
<> (not equal).

Examples:
DEGREE = BA, Catalog_Year >= 9495.

Remark a free-text string that describes a requirement using natural language
similar to the language of the college catalog. Example:

REMARK "Must take either 6 credits in a foreign
language or pass a test."

Requirement
Block

see Block.

Rule a specific degree requirement. A rule is a Scribe language statement of
one of the degree requirements. The rule contains a list of courses,
blocks, block types, or non-courses, followed by zero or more qualifiers,
(such as minimum grade, maximum number of credits per term), and
terminated by a semicolon. For example, the requirement in the catalog is
6 credits of upper-division mathematics. The Scribe rule is: 6 Credits In
MATH 300:499.

Rule Qualifier a Scribe keyword that describes a degree requirement that applies to all
courses satisfying a particular rule. Rule qualifiers are Scribe reserved
words that indicate properties of the courses used to satisfy a rule, such as
minimum grade or maximum number of transfer courses. Each rule can
have zero or more rule qualifiers. Example: MinGrade 2.0.

Standard Data the standard student information supplied to Degree Works by the student
system. Typically this data includes ID, Name, SSN, degree, majors,
minors, concentrations, specializations, college, school, program, catalog
years, and course data.

Token a single word or a string within quotes in a requirements block. Tokens are
separated by one or more spaces, tabs or newline characters. Examples:

"This is a remark" is one token.
3 CREDITS IN ENG 100; is six tokens (3, CREDITS, IN, ENG,
100, and semicolon)

Token Class a category of tokens that have a similar purpose in the Scribe language.
For example, the 'and-or' token class consists of the tokens And and Or,
and they both serve as connectors within the language.

UCX a collection of common code values stored in the Universal Code
eXtension file. These codes are used by Degree Works to validate codes
used in the requirements for schools, college, concentration, degree, liberal
learning, major, minor, program and specialization.

 Degree Works | Technical Guide 5.0.3.1 20

Wildcard a symbol representing one or more occurrences of any alphanumeric
character (i.e. A-Z, a-z, 0-9). The wildcard in Degree Works is the "@"
sign. The wildcard is used for pattern matching of disciplines and course
numbers. For example, "BIO @L" represents any BIO courses with course
numbers ending in "L". PE@ 1@ represents any course with a discipline
beginning with "PE" and a course number beginning with "1".

 Degree Works | Technical Guide 5.0.3.1 21

Special Topics
To help you use Degree Works effectively, there are a variety of special topics that need to be
discussed and elaborated:

Adding Custom Data Items
Custom data items are pieces of data that are not part of the standard data items passed from the
student system to Degree Works Custom data items are also data that are available for use in an
IF expression in Scribe. They are defined in UCX table UCX-SCR002. The primary use of
custom data items in Degree Works is in an IF expression, where a requirement varies based on
student data. For example, if Catholic students must take RLGN 300 and non-Catholic students
must take RLGN 305 then the requirement could be written as follows:

If (RELIGION = CA) Then
 1 Class in RLGN 300 Label “Catechism”
Else
 1 Class in RLGN 305 Label “Religion for the masses”;

The above requirement will parse with an error indicating RELIGION is invalid. In order to add
RELIGION or another piece of data as a custom data item, follow the steps outlined below.

Step 1:
Determine where the custom data item is stored in the student system. For example, RELIGION
could be stored on a user-def field on the RAD-PRIMARY-MST or in the RAD-CUSTOM-DTL –
which is the most logical place to store custom data.

Step 2:
If you want to use the data item in an IF expression in Scribe then it must also be added to UCX-
SCR002.

Step 3:
Check UCX-SCR002 to see that the data item (e.g. RELIGION) is not part of the custom data
items. If it is, then use the code from UCX-SCR002 in the IF expression and skip to step 6 of
these instructions.

Step 4:
If the data item is not in UCX-SCR002 then add the data item to UCX-SCR002. Choose a name
for the data item that is from one to twelve characters long, e.g. RELIGION. This name is the
Degree Works name of the custom data item. It is usually upper-case. Find out the element
number of the data item by looking in UCX-SYS999. For example, the element number for the
Custom-Value is R323. Use Controller to add the new code to UCX table UCX-SCR002. Create
a new record with a code of “RELIGION” or whatever name you want to use in Scribe. In the
Description field – enter something meaningful (e.g. "Religious affiliation"), The Data Element
field– should contain your value from UCX-SYS999 – in this case R323. Since this value is
coming from a “Dtl” record we need to specify which record to read. This is done by filling out the
Edit Element information. Here we want the record with RELIGION in the Custom-Code field –
which is element R322. The Type field should be filled with EV and the value should be
“RELIGION”.

See the UCX documentation of table UCX-SCR002 for examples.

 Degree Works | Technical Guide 5.0.3.1 22

Adding NonCourse Data Items
NonCourse data items are pieces of data from the student system that are non-standard
requirements, not a traditional course but something required for graduation. They are defined in
UCX-SCR003. Examples of NonCourse data items are music recital, art gallery show, chapel
attendance, and placement exams.

1 NonCourse (RECITAL)
 ProxyAdvice "At least one recital is required"
 Label RECITAL "Recital";

1 NonCourse (MATHEXAM > 12)
 ProxyAdvice "A math exam with a score better than 12 is needed"
 Label MATHEXAM "Math exam";

The above requirements will parse with errors if the NonCourse code in parentheses is invalid.

To add MATHEXAM or another piece of data as a NonCourse data item, follow the steps outlined
below.

Step 1:
Determine where the noncourse data is stored in the student system. For example, MATHEXAM
might be stored in the RAD-CUSTOM-DTL, but often noncourses are stored in the RAD-
NONCRSE-DTL. You can check the Student Data Report to verify where the data is being
housed for your students.

Step 2:
If the data item is not in UCX-SCR003 then add the data item to UCX-SCR003. Choose a name
for the data item that is not longer than twelve characters, e.g. MATHEXAM. This name is the
Degree Works name of the noncourse data item. It should be upper-case. If the data is not on
the RAD-NONCRSE-DTL, find out the element number of the data item by looking in UCX-
SYS999. Use element number 0000 if the value is on the RAD-NONCRSE-DTL.

Use Controller to add the new code to UCX-SCR003. Add a new record and enter the Degree
Works name for the data item, e.g. MATHEXAM, as the key. In the Description field enter a
description of the data item (e.g. "Math Placement Exam"), followed by the element number in the
Data Element field. The Edit Element, Type and Value fields are used if the value you are getting
is from a “detail” record.

See the UCX documentation of table UCX-SCR003 for examples.

 Degree Works | Technical Guide 5.0.3.1 23

Additional Advisee Filtering

Overview

This feature allows a user to be assigned the capability of having not only their advisees
preloaded on the web screen, but also all students in a designated major. This is particularly
useful for Department heads especially if they have no assigned advisees. This functionality
could also be used to allow any advisor access to all students (majors) in their department in
addition to their advisees, or instead of any advisees. This is controlled on a user by user basis
via the advisee filter fields using Controller. Access to this functionality is granted via a service
(SDDEPART) granted to the appropriate UserClass.

Services Affected
SDDEPART service – allows Advisees and students with the user’s advisee filter(s) to be listed

It is automatically included as part of the DEPT UserClass.

SDSTUMY service was modified to also check the user’s advisee filter(s) to preload students with
the specified major in addition to the user’s advisees. This allows advisors to be given this same
capability as Department Heads if needed.

Setup Procedure
Step 1:
Be sure the appropriate user is given the necessary UserClass to allow access to this
functionality.

Step 2:
Use Controller to define the advisee filters (up to 10 majors) for the user.

EXAMPLE:
In the case below, the user LOCKHART was given DRAM as an advisee filter. The user had a
UserClass of ADV, which has the SDSTUMY service associated with it. So when LOCKHART
logged into Degree Works, his advisee list was preloaded, and all students with a major of Drama
(DRAM) were also added to the list.

If the user was not assigned the DRAM advisee filter, then the only students listed would be
LOCKHART’s advisees.

 Degree Works | Technical Guide 5.0.3.1 24

Degree Works Bridge
The Degree Works Bridge is a mechanism for loading the Degree Works data structure with
relevant data from the student database. It has a well defined API-format that may be used by a
university that is extracting data in a static fashion on a regular basis, or in a dynamic fashion on-
demand. Degree Works also has a “native” integrated extract for selected student systems.

Static Bridge
Student data is typically moved from the University’s student database by using the batch
process RAD11. This process can be scheduled to run on a regular periodic basis or can be
launched on a manual basis. For more information about this process, please refer to the Bridge
Interface Format Technical Handbook.

Dynamic Refresh
Although the recommended “best practice” is that the RAD11 static bridge be used to load
student data in batch mode on a regular periodic basis, the RAD08 dynamic bridge may be used
to load student data throughout the course of the day as events trigger the need. RAD08 is a
daemon process that listens for incoming bridge requests and saves the incoming data to the
Degree Works database. Once a request is sent to RAD08 and processed, subsequent run-audit
requests will use the new data for the given student.

The University must write an application which issues the request for Refresh and sends it to
RAD08 running on the Degree Works classic server.

The number of RAD08 processes that listen for and process bridge requests is controlled by the –
C flag in the RAD08JOB. The –C flag controls the number of children the parent RAD08 will
create to listen for requests. Since the parent also listens for and processes requests, the total
number of RAD08 processes will be the number of children plus one.

You may decide to URL encode the request before sending it RAD08. If URL encoding is being
used, the WEB84_URL_DECODE flag in rad08job must be set. Setting this flag tells the WEB84
subroutine that RAD08 calls to decode the request when breaking out the name-value pairs contained
within.

Banner sites using the “native” Degree Works Integrated Interface should not use this RAD08
process. Please refer to the Banner Considerations document for more information on the
integrated Banner dynamic refresh process.

 Degree Works | Technical Guide 5.0.3.1 25

Dynamic Refresh Process Flow

1. The University’s application sends request to Degree Works to store student data in the
Degree Works database.

2. Degree Works stores the student data in the Degree Works database.
3. The University’s application sends a Web run audit request to Degree Works.
4. Degree Works reads the student data from the Degree Works database, processes the

audit and returns the audit report to the user.

Refresh Request
The refresh request is in name-value pair format and contains the following information:

Name Description Length
ACTION “REFRESH” for student data refresh 07
STUID ID of the student for which the refresh is needed 10
RECCOUNT Count of student records returned as REC name-value pairs 04

After the header information, student data records must be sent in the refresh request.

Name Description Length
REC Repeated up to 256 times. Each REC name-value pair contains a

record in Bridge-Interface-Format including a HEADER = 28 bytes,
DATA = 972 bytes for a maximum total of 1000 bytes.

1000

Example Refresh request (not all student records are shown):

ACTION=”REFRESH”&STUID=”123456”&RECCOUNT=0003&

 Degree Works | Technical Guide 5.0.3.1 26

REC=”123456 R010PRIM A 123456 Johnson, Joyce”&
…
REC=”123456 R020STUD A 123456 000000 20001”&
…
REC="123456 R050BIOG A 123456 542661234 19801231"&#
<$ENDMSG$>

An ampersand “&” separates each name-value pair, with an ampersand and pound-sign “&#”
signaling the end of the data. The end of the entire response is signaled by “<$ENDMSG$>”.
Each value may or may not be enclosed by quotation marks but quotation marks are required if
the value may contain an ampersand. All data for a student must be bridged; do not bridge just
the changed or new records.

To increase the efficiency of the data transfer over the network, trailing spaces from each REC
name-value pair should be removed. If only the first 48 bytes contain actual data then the trailing
spaces should be removed before placing the record in the REC name-value pair. Records must
already be sorted by the bridge-indicator field (R010PRIM, R020STUD, etc) before sending them
across the network.

Refresh Response
The RAD08 process returns a message containing status information concerning the processing
of the refresh request. The name-value pairs are listed in the tables below. Note that “Length” is
the maximum length in bytes.

The status information in the Refresh Response includes:

Name Description Length
STATUS OK or FAIL. Return FAIL is error encountered. 04
ERROR Error number specifying error encountered; e.g., 4321. Omit if no

error encountered.
04

ERRMSG1 Error message string 1 describing error. Omit if no error. 80
ERRMSG2 Error message string 2 describing error. Omit if no error. 80

Example Refresh Response:

STATUS=OK&ERROR=""&ERRMSG1=""&ERRMSG2=""&ACTION=REFRESH&
STUID=123456&#<$FINISHED$>

Error numbers in the range of xxxx-xxxx indicate specific error conditions when attempting to
process the refresh request. The error number returned along with the error message strings will
be returned. The error messages may say “Student ID number not found in student system” or
“Database error occurred when writing student classes”. An error is only returned if the data
cannot be saved, is missing, or is invalid.

Refresh Thank You
After the University receives the status response a thank-you reply should be sent to the Degree
Works refresh listener to indicate that the response has been read and it is ok to close the socket
connection.

The thank-you message should be a simple “<$THANKYOU$>” value. When the Degree Works
listener receives this message the current socket connection will be closed.

 Degree Works | Technical Guide 5.0.3.1 27

Equivalent Course Tracking
Equivalent courses are courses that changed discipline or number at some point in time. These
equivalents are important to Degree Works when a student is being evaluated against a catalog
year that uses a different course-key than the course-key on the student's class. If Degree Works
does not know about the equivalency, the rule will never be satisfied because the course-key on
the student’s record does not match the course key Scribed in the rule. The solution to this
problem is to set up the equivalence in the dap_eqv_crs_mst.

For example, John took ENGL 101 in the fall of 1990, took a year off and then returned to school
as a member of the class of 1996. ENGL 101 changed to ENGL 115 in the fall of 1995. The
course catalog requirements include ENGL 115 as a requirement, not ENGL 101 (which is now a
different course). John's ENGL 101 course from 1990 should fulfill the ENGL 115 requirement of
1996.

In order for the Auditor Engine to automatically evaluate ENGL 101 as ENGL 115, an equivalent
course record must be created. Once created, the equivalent courses serve as a map of course
number and discipline changes. The equivalent course record is not specific to a student. The
equivalent course record is stored in the dap_eqv_crs_mst.

Special Notes:

1. This document assumes your institution does not reuse course keys. A simple example
of reusing course keys: MATH 103 was “Advanced Algebra II” during catalog year
19992000, then was changed to MATH 106. Then in 20002001 MATH 103 was reused
to be a completely different course such as “Pre-Calculus I”. If your institution has reused
course keys, do not attempt to use the dap_eqv_crs_mst as described here; please
contact Ellucian for assistance in setting this up.

2. The structure of the dap_eqv_crs_mst is:

class_dtl information (“When the course was taken”)

TERM-CATALOG-YR X12 Degree Works catalog year (UCX-STU035) mapped from

the term the class was taken. Mapped from term to catalog
year via UCX-STU016. The character “@” can be used as
a wildcard. Using the wildcard here tells the auditor that it
does not matter when the student took the class.

OLD-COURSE-
DISCIPLINE

X12 Discipline from the course-key of the class taken (UCX-
STU352).

OLD-COURSE-NUMBER X12 Number from the course-key of the class taken. The
character “@” can be used as a wildcard (primarily used if
there is a discipline change, i.e. ENGL has changed to
ENG).

 Degree Works | Technical Guide 5.0.3.1 28

Course Catalog Information (“When the equivalency exists”)

TARGET-CATALOG-YR X12 Degree Works catalog year (UCX-STU035) mapped from

the student's catalog year. Mapped from student catalog
year to Degree Works catalog year via UCX-XXX358. The
character “@” can be used as a wildcard. Using the
wildcard here tells the auditor to apply this equivalency to
all catalogs.

NEW-COURSE-
DISCIPLINE

X12 Discipline from the course-key in the target catalog year –
what the discipline is in requirements written for the target
catalog year.

NEW-COURSE-NUMBER X12 Course number from the course-key in the target catalog
year – what the course number is in the requirement block
written for the target catalog year. The character “@” can
be used as a wildcard (primarily used if there is a discipline
change, i.e. ENGL has changed to ENG).

Equivalent Course Tracking: Standard Setup
There are two steps you must follow to utilize the dap_eqv_crs_mst.

Step 1. Update all prior catalogs with the change.
If it is a discipline code change, find all instances of the discipline in the prior
catalogs and change it to the new discipline code. If it is a specific class change,
find all instances of the class in the prior catalogs and change it to the new class.

Step 2. Add the equivalency to the dap_eqv_crs_mst.
a) Bridge the records using the R190DEQV layout (Refer to Degree Works Bridge

to Student Record Systems Technical Specifications). You may bridge the
entire contents of the dap_eqv_crs_mst or bridge only new records as needed.

b) Use Controller’s UCX-CFG070 screen to maintain your equivalences. You

should then run the dapucx2eqv script. Be careful about using both the bridge
method and UCX-CFG070 to maintain equivalences.

Example 1: Discipline Code Change
The school has decided to change the course discipline code from ENGL to ENG. The school
will either manually change the requirement blocks referencing ENGL to say ENG, or the school
will set the UCX-CFG020 DAP13 Process Equivalences flag to Y and run DAP16 to reparse all of
the blocks. With this flag set to Y, the underlying block requirements will now say ENG instead of
ENGL.

For example, “1 Class in ENGL 101” will be changed to “1 Class in ENG 101”. This will happen
through the laborious manual process or by running DAP16 with that flag enabled. Though the
changes will not be reflected in Scribe when the block is viewed.

However, the auditor will now not apply any ENGL 101 classes to this rule. Setting up
dap_eqv_crs_mst records is needed to tell Degree Works to apply ENGL classes against ENG
rules.

 Degree Works | Technical Guide 5.0.3.1 29

Step 1. Update prior catalogs with the new course number:
In Scribe, locate any instance of ENGL and change it to ENG for every catalog – or rely
on DAP16 with the UCX-CFG020 DAP13 Process Equivalences flag set.

Step 2. Add an entry to UCX-CFG070 in Controller
Catalog year class was taken = @
Old Course Discipline = ENGL
Old Course Number = @
Student’s Catalog Year = @
New Course Discipline = ENG
New Course Number = @

Translation: “Degree Works will apply all ENGL courses against ENG requirements.”

Example 2: Course Number Change
The school has decided to change the course number for the Math Statistical Analysis class. In
the past, it had been listed as MATH 176. From now (catalog year 20042005) on, this class will
be listed as MATH 200. The current catalog now contains rules such as “1 CLASS in MATH
200”. Without a dap_eqv_crs_mst, Degree Works would not apply MATH 176 to the MATH 200
rule. With the dap_eqv_crs_mst, you are telling Degree Works that the classes are really the
same and thus MATH 176 can apply to the MATH 200 rule.

Step 1. Update prior catalogs with the new course number:
In Scribe, locate any instance of MATH 176 and change it to MATH 200 for every catalog
– or rely on DAP16 with the UCX-CFG020 DAP13 Process Equivalences flag set.

Step 2. Add an entry to UCX-CFG070 in Controller
Catalog year class was taken = @
Old Course Discipline = MATH
Old Course Number = 176
Student’s Catalog Year = @
New Course Discipline = MATH
New Course Number = 200

Translation: “Degree Works will take every instance of MATH 176 and treat it as MATH
200.”

 Degree Works | Technical Guide 5.0.3.1 30

UCX-CFG070 Equivalence Course Records
The UCX-CFG070 Equivalence Course Records table contains the equivalence records for
mapping historic course keys to current course keys. This table provides an easy to use interface
for maintaining the equivalence course records for use in Degree Works. Each record consists of
a 30 byte key followed by a number of 12 byte fields for defining the course equivalence. The key
can be any alphanumeric value but must be unique for each record. Wildcards can be used in the
catalog year and course number fields. This is useful for changing course keys across multiple
catalog years or for changing discipline codes globally. In the screen shot below, MLFRATH 100
taken in the 19901991 catalog year became FREN 1000 for students with a catalog year of
20012002.

The Note field is a 50 byte free text field which can be used for internal documentation. This
information is not used in audits and is not displayed on any of the audit reports.

You can easily create new equivalence course records using the Controller data entry screen.
New UCX-CFG070 records created in Controller will not be available for use in Degree Works
until they are loaded into the dap_eqv_crs_mst table in the DAP database. To load new records
into the DAP database, you should manually load the records by running the dapucx2eqv script.
To load the dap_eqv_crs_mst records into the UCX-CFG070 table, use the dapeqv2ucx script.
This script should only be run once to build the UCX-CFG070 records from the existing
dap_eqv_crs_mst table records. You can also use the Bulk Operations function in Controller to
load these records from a flat file.

Processing Equivalences into Scribed courses
When course numbers change (HIS 206 was renamed HIST 212) we need to make sure these
changes are correctly applied to Degree Works. We have to make sure students taking the old
course or the new course get credit for the particular requirement – and we need to make sure
that students get the correct advice – which is to take the new course number. Scribers may go
through historic blocks and make alter the requirements to list the new course number instead of
the old one – but this can be a daunting task if there are a lot of changes.

Degree Works can alter the requirements listing the old course key and change it to the new
course key based on the equivalence records that are in place.

To enable this feature you must do the following:

1. Set the UCX-CFG020 DAP13 Process Equivalences flag to Y.
2. Run DAP16 in Transit to reparse all of your blocks

Each time the equivalence table changes you should rerun DAP16 to pick up the changes and
apply them to your rules.

With these dap-eqv-crs-mst records in place in UCX-CFG070:

Catalog Year
Taken

Old Course
Discipline

Old
Number

Student’s Catalog
Year

New Course
Discipline

New Number

2002 DANI 1 @ ANTH 100
2003 DANI 1 @ ANTH 100
2004 DANI 1 @ ANTH 100

With this block in place:

 BEGIN
 ;

 Degree Works | Technical Guide 5.0.3.1 31

 1 Class in DANI 1
 Label "My rule 1";
 END.

The Diagnostics Report shows the Requirement with the equivalence information. The
Requirement line shows what the rule looks like after the conversion has taken place and also the
original course that was scribed.

Note: Although the Diagnostic Audit is showing the equivalence information in the Requirement
line our standard Registrars Report worksheet will not. Should you choose to show the
information, it is available – a stylesheet change is all that is needed.

Caveats:
Requirements containing ranges or wildcards such as these

5 Credits in MATH 1@
5 Credits in MATH 100:199

will not be processed following these rules. These requirements will have to be taken care of
manually at this time.

Simple Scenario 1: Course A was offered from 2002 to 2005, but then in 2006 course A was
renamed B.

These UCX-CFG070 records were built:

Catalog Year
Taken

Old Course
Discipline

Old
Number

Student’s Catalog
Year

New Course
Discipline

New Number

2002 A 001 @ B 001
2003 A 001 @ B 001
2004 A 001 @ B 001
2005 A 001 @ B 001

The 2002 scribed block looks like this:
 1 Class in A001, X001, Y001

Problem:

Under normal operations we that the student has taken A in 2002 and we rename it to B before
trying to apply it to rules. When doing this against this block B does not fit since the rule still says
A. For some schools it is a lot of work to go through and fix all of their rules to list the current
course name.

Solution:

When saving the blocks the parser will make this conversion.

 1 Class in A001 B001, X001, Y001

 Degree Works | Technical Guide 5.0.3.1 32

This change will be made to the saved syntax tree that is then pulled into the auditor.

When auditing a student who took this course when it was named A, the normal processing will
take effect and A will be renamed to B and thus will apply to this rule. Students taking the course
after 2005 will take it as B and it will apply normally also.

 Degree Works | Technical Guide 5.0.3.1 33

Complex Scenario 2: A changed to B but then B was changed to C

These UCX-CFG070 records were built:

Catalog Year
Taken

Old Course
Discipline

Old
Number

Student’s Catalog
Year

New Course
Discipline

New Number

2002 A 001 @ B 001
2003 A 001 @ B 001
2004 B 001 @ C 001
2005 B 001 @ C 001
Yes, A was renamed to B but then B was renamed to C.

The 2002, 2003, 2004 and 2005 blocks should all list the rule using C:

 1 Class in A001 C001, X001, Y001
 1 Class in B001 C001, X001, Y001

This should be handled as required.

Complex Scenario 3: Reused course key

A (Intro to Art) was renamed to B but then A was reused for some other course (Sculpturing).
When this happens, the logic is complicated. We will be looking up the course in the UCX-
CFG074 table to find out if the course was reused. If the course was reused the parser will skip
the processing of this course - these reused courses will have to be rescribed manually.

Processing Cross-Listings into Scribed courses
There are two options when dealing with scribing of cross-listed courses in Degree Works.

(1) Manually list all of the cross-listed pieces together in rules using Scribe:
 1 Class in MATH 101, PHIL 101, STAT 101;

(2) Manually list just one piece of a cross-listed set using Scribe rules. Use UCX-CFG073

plus the parser to automatically insert the rest of the cross-listed set inside curly braces
{Hide…}:
 1 Class in MATH 101 {Hide PHIL 101, STAT 101};

To enable the second option perform the following:

(1) Set the UCX-CFG020 DAP13 Process Cross-Listings flag to Y.

(2) Setup UCX-CFG073 – For the example above two records would need to be added:
(1) MATH101 would be added as the UCX Key to UCX-CFG073 with the UCX Value of
PHIL101 and
(2) MATH101 would be added as the UCX Key to UCX-CFG073 with the UCX Value of
STAT101

Refer to the DGW Technical UCX Documentation for details on setting up UCX-CFG073
records:

For non-Banner clients this table must be loaded manually using Controller or
inserted from a file containing records formatted correctly for UCX-CFG073 using
the Bulk option of Controller.

For Banner clients this table may be automatically loaded by the Banner Extract
EQUIV process if desired or it could be manually loaded. To automatically load
UCX-CFG073:

 Degree Works | Technical Guide 5.0.3.1 34

1. Set the UCX-CFG020 BANNER Cross List in SCREQIV = Y.
2. Use Transit to launch RAD38 – the equivalance extract
3. UCX-CFG073 will be generated automatically if any cross listed course

records are found in the SCREQIV table.

(3) Use Transit to launch DAP16 to reparse all blocks.

Each time the UCX-CFG073 cross-listings table changes DAP16 should be run to pick up the
changes and apply them to your rules.

With these cross-listing in place in UCX-CFG073:
MATH 101 cross-listed with PHIL 101
MATH 101 cross-listed with STAT 101
MATH 102 cross-listed with PHIL 102

With this block in place:
 BEGIN
 MaxCredits 9 in MATH 101, 102
 ;
 5 Credits in MATH 101 , 102
 Label "My rule 1";
 END.

The Diagnostics Report displays the cross-listed courses in three different places:

1. The Header Qualifiers line shows the MaxCredits qualifier with the cross-listed
information.

2. The advice (Still Needed) line shows the cross-listed information.
3. The Requirement line shows what the real rule looks like – which is different from the

Scribed block above.

Note: Although the Diagnostic Audit is showing the cross-listed information in the advice the
standard Student View worksheet will not. However, if you choose to show the cross-listed
information it is available – a stylesheet change is all that is needed.

If the same type of changes are to take place whenever PHIL 101 is scribed, UCX-CFG073
records must be created pointing PHIL 101 to MATH 101 and PHIL 101 to STAT 101. The same
goes for STAT 101. In all, six records would be needed to cover these three courses in the cross-
listing set.

Caveats:
The parser will not be creating header qualifiers to make sure the student will only get credit for
the course once in case they are allowed to register for it under the two different names. A header
qualifier like this will not be created – this should be handled by the registration system.

MaxClasses 1 in MATH 102, PHIL 102

 Degree Works | Technical Guide 5.0.3.1 35

These qualifiers may be added manually if required.

Requirements containing ranges or wildcards such as these

5 Credits in MATH 1@
5 Credits in MATH 100:199

will not be processed following these rules. These requirements will have to be taken care of
manually at this time.

 Degree Works | Technical Guide 5.0.3.1 36

Financial Aid Audit
A new audit type has been added to Degree Works, so that a Financial Aid audit can be
processed in addition to the Academic Audit. Rules for Financial Aid will be built using Scribe.
Processing a student’s financial aid data against these requirement blocks will verify if a student
has met the aid requirements of specific awards, as defined in the rules of the block.

Please note that this Financial Aid audit has nothing to do with the CPoS (Course Program of
Study) component of Banner. Nothing mentioned here is needed to get CPoS working.

This process is very similar to that of the Academic Audit. Some special notes pertinent to the
Financial aid Audit follow:

AID KEYS:

SDAIDAUD – Allow Financial aid Tab
SDAIDREV – Allow viewing of Financial Aid audits
SDAIDRUN – Allow processing new Financial Aid audits
SDAIDHIS – a picklist of the historic audits for the student will appear
SDAIDDEL – delete historic Financial Aid audits
SDWEB50 – aid audit Worksheet
SDWEB51 – aid audit Worksheet combined with Academic Audit Worksheet

These keys are not assigned to any user class (shp group) – you need to assign these keys in
SHPCFG

AUDIT NOTES:
1. In-progress checkbox is always checked as we required the current classes. Preregistered is

always unchecked - we never want future classes for an Aid Audit.
2. Aid history obeys the same UCX-CFG020DAP14 History Depth setting when saving audits –

if the depth is set to 3 you will end up with 3 degree audits and 3 aid audits.
3. When running a financial aid audit a normal audit is run but any AWARD blocks are also

pulled in based on the AWARD values found in the rad_aid_dtl.
4. All rad_aid_dtl records are read when doing an Aid audit - no UCX-SCR002 entries are

needed.

SCRIBE NOTES:
1. AWARD block house aid requirements.
2. AWARD header qualifiers must have Labels as we show their advice to the right of the label.
3. AWARD blocks should always contain the current aid year's requirements, and be saved with

open-ended catalog years. As long as your AIDAWARD BAN080 item is up-to-date, that
block will only ever be given to students who have that award in the *current* aid year,
because only those students will have that AWARD code in rad_aid_dtl.

UCX TABLES:
1. UCX-STU016 –Term Type and Financial Aid Year fields need to be populated; only terms

with non-blank aid year fields will appear in the web Aid Term picklist.
2. UCX-AUD033 houses AWARD codes. You need to populate UCX-AUD033 to see awards

appear in Scribe picklist
3. UCX-BAN080 – used to provide sql statements to extract financial aid information into the

database (Banner); OPS clients use the aid.client.properties file in admin/common.

Suggested entries for UCX-BAN080 AIDAWARD:

AIDAWARD:AID AWARD
AIDAWARD:COLUMN RPRAWRD_FUND_CODE
AIDAWARD:ORDERBY RPRAWRD_FUND_CODE

 Degree Works | Technical Guide 5.0.3.1 37

AIDAWARD:TABLE RPRAWRD
AIDAWARD:WHERE_1 RPRAWRD_AIDY_CODE = '0506'
AIDAWARD:WHERE_2 AND RPRAWRD_AWST_CODE = 'ACPT'

Suggested entries for UCX-BAN080 AIDYEAR:
AIDYEAR:AID AIDYEAR
AIDYEAR:COLUMN RPRAWRD_AIDY_CODE
AIDYEAR:ORDERBY RPRAWRD_AIDY_CODE
AIDYEAR:TABLE RPRAWRD
AIDYEAR:WHERE_1 RPRAWRD_AWST_CODE = 'ACPT'
AIDYEAR:WHERE_2 AND RPRAWRD_AIDY_CODE in
AIDYEAR:WHERE_3 (SELECT b.ROBINST_AIDY_CODE FROM ROBINST b
AIDYEAR:WHERE_4 WHERE b.ROBINST_STATUS_IND = 'A')

Suggested entries for UCX-BAN080 AIDENRSTATUS
AIDENRSTATUS:AID ENROLLSTATUS
AIDENRSTATUS:COLUMN SGBSTDN_FULL_PART_IND
AIDENRSTATUS:ORDERBY SGBSTDN_FULL_PART_IND
AIDENRSTATUS:TABLE SGBSTDN a
AIDENRSTATUS:WHERE_1 a.SGBSTDN_TERM_CODE_EFF =
AIDENRSTATUS:WHERE_2 (SELECT MAX(b.SGBSTDN_TERM_CODE_EFF)
AIDENRSTATUS:WHERE_3 FROM SGBSTDN b
AIDENRSTATUS:WHERE_4 WHERE b.SGBSTDN_PIDM = a.SGBSTDN_PIDM)

Suggested entries for UCX-BAN080 AIDSTATUS
AIDSTATUS:AID AIDSTATUS
AIDSTATUS:COLUMN RORSAPR_SAPR_CODE
AIDSTATUS:ORDERBY RORSAPR_SAPR_CODE
AIDSTATUS:TABLE RORSAPR
AIDSTATUS:WHERE_1 RORSAPR_SAPR_CODE IS NOT NULL

 Degree Works | Technical Guide 5.0.3.1 38

Financial Aid Scribe Words
 Alias Data Source
These are only allowed in an IF-statement in an AID audit - usually in an AWARD block:
CompletedTermType TermType
CompletedTermCount TermCount
TotalCreditsEarned TotalCreditsCompleted rad_term_dtl.rad_cum_tot_earn
ResidenceCreditsEarned ResidenceCreditsCompleted rad_term_dtl.rad_cum_cr_earn
TotalCreditsAttempted CreditsAttempted rad_term_dtl.rad_cum_gr_att
CreditsAttemptedThisTerm look at the classes on the aid-term

- count the
rad_class_dtl.rad_credits (not
earned); this does not include any
credits for withdrawn classes –
unless they are bridged with non-
zero credits.

CreditsEarnedThisTerm look at the classes on the aid-term
- count the
rad_class_dtl.rad_gpa_credits

CreditsAttemptedThisAidYear look at the classes on the terms in
the aid-year specified - count the
rad_class_dtl.rad_credits (not
earned); this does not include any
credits for withdrawn classes –
unless they are bridged with non-
zero credits.

CreditsEarnedThisAidYear look at the classes on the terms in
the aid-year specified - count the
rad_class_dtl.rad_gpa_credits

CompletedTermCount count the terms where at least
one class was taken either in
residence or as a transfer

ResidenceCompletedTermCount count the terms where at least
one class was taken in residence

LastCompletedTermType else go backwards in time and
find the find the first completed
term

DegreeCreditsRequired CreditsRequired credits required from starting
block - only allowed on right-
hand-side of an IF-statement

 Degree Works | Technical Guide 5.0.3.1 39

These are allowed in academic and aid audits - though make the most sense in an aid audit in an
AWARD block:
MinCredits 12 in @
(With DWTerm=Previous)

 previous term the student took
classes - prior to active

MinCredits 12 in @
(With DWTerm=Current)

 active-term

MinTerm X Credits/Classes look at credits ATTEMPTED -
anywhere in the audit - including
failed and OTL
only works in the starting block or
an AWARD block
If the MinTerm is in the starting
block or an AWARD block we
then look at the entire audit -
otherwise we just look at classes
in this scope.

Under 30 Credits in @ (With
Attribute=DEV)

Below new header qualifier
As long as the student has less
than or equal to the number of
credits/classes specified = OK
All attempted classes/credits are
applied here

MinGPA 2.0 in (MAJOR)
MinGPA 2.0 in (MAJOR = MATH)

 These MinGPA scopes can be
used in any block - but normally
used in an AWARD block

"MinGPA 2.0" in AWARD block
looks at the overall GPA

Notes:

1. "Previous" and "Current" are special terms now for DW; uppercase or lowercase - both
work

2. Under and Below are new reserved words
3. OF is a new reserved word - but can exist as a discipline - only used in an IF-stmt (75%

of)
4. % is now also being used but it should not be added to the reserved punctuation - it can

still be used in codes

 Degree Works | Technical Guide 5.0.3.1 40

HEADER examples

if (TotalCreditsEarned > 30) then

 beginif

 MinGPA 3.0

 ProxyAdvice "Your CrEarned > 30 - so you must meet the 3.0 requirement"

 endif

if (LastCompletedTermType = Spring) then

 beginif

 MinGPA 2.5

 ProxyAdvice "You need a GPA of 2.5 now that you have completed Spring"

 endif

if (CompletedTermCount > 3) then

 beginif

 MinGPA 3.0

 ProxyAdvice "You need a GPA of 3.0 now that you have 3 terms completed"

 Endif

if (ResidenceCompletedTermCount > 3) then

 beginif

 MinGPA 3.2

 ProxyAdvice "You need a GPA of 3.2 now that you have 3 terms completed at
UW"

 Endif

MinGPA 2.5 in (MAJOR)

 ProxyAdvice "GPA not good enough for Major block"

 Degree Works | Technical Guide 5.0.3.1 41

Under 30 Credits in @ (With Attribute=DEV)

 ProxyAdvice "You have more than 30 developmental credits"

 Label "No more than 30 developmental credits"

if (EnrollStatus=F) then # F=full-time

 beginif

 MinTerm 12 Credits

 ProxyAdvice "You did not take at least 12 credits per term"

 endif

else if (EnrollStatus=P) then # P=part-time

 beginelse

 MinTerm 6 Credits

 ProxyAdvice "You did not take at least 6 credits per term"

 endelse

RULE examples

if (CreditsAttemptedThisTerm > 12) then

 RuleComplete

 Label "12 credits attempted this term - met"

else

 RuleIncomplete

 ProxyAdvice "You have not yet attempted 12 credits"

 Label "12 credits attempted this term - not met";

if (CreditsEarnedThisTerm >= 75% of CreditsAttemptedThisTerm) then

 RuleComplete

 Label "Term credits earned satisfied"

else

 RuleIncomplete

 ProxyAdvice "You have not yet earned 75% of attempted credits"

 Label "Term credits earned- not met";

if (CreditsAttemptedThisAidYear > 40) then

 RuleComplete

 Label "Aid Year attempted - met"

else

 RuleIncomplete

 ProxyAdvice "You have not yet attempted 40 credits in the aid year"

 Label "Aid Year attempted - not met";

 Degree Works | Technical Guide 5.0.3.1 42

if (CreditsEarnedThisAidYear >= 75% of CreditsAttemptedThisAidYear) then

 RuleComplete

 Label "Aid year credits earned satisfied"

else

 RuleIncomplete

 ProxyAdvice "You have not yet earned 75% of attempted credits in the aid
year"

 Label "Aid year credits earned- not met";

if (TotalCreditsAttempted > 30) then

 RuleComplete

 Label "total-cr-attempted - met"

else

 RuleIncomplete

 ProxyAdvice "You have not yet attempted 30 credits"

 Label "total-cr-attempted - not met";

if (ResidenceCreditsEarned >= 75% of TotalCreditsAttempted) then

 RuleComplete

 Label "Credits earned is at least 75% of credits att"

else

 RuleIncomplete

 Label "Credits earned is NOT 75% of attempted";

if (TotalCreditsEarned < 150% of DegreeCreditsRequired) then

 RuleComplete

 Label "Credits earned is less than 150% of required"

else

 RuleIncomplete

 Label "Credits earned more than than 150% of required";

12 Credits in @ (With DWTerm = Current) Label "Current term";

12 Credits in @ (With DWTerm = Previous) Label "Previous term";

 Degree Works | Technical Guide 5.0.3.1 43

Data Structures for the Financial Aid Audit
The data structure for holding data required for the financial aid audit is based on the
rad_custom_dtl, with one name value pair stored in each record (custom approach). Based on
the current known items required for the financial aid audit, the custom approach allows us to add
items without making any structural changes to the database. Since all the items needed for an
institution’s financial aid audit are unknown, this structure seems most appropriate due to its
flexibility. The structure is:

RAD_AID_DTL

Column Name Type Size

srn_id Integer

rad_id Char 10

rad_aid_code char 12

rad_aid_value Char 12

unique_id Integer

unique_key Char 36

This version of the data structure will only deal with a single year’s data since there is no aid_year
column on the table. The concept of current year will effectively be decided by the customer
when they select the data being extracted and bridged. At some point, the decision to begin
bridging next year data into these structures will be made, with the understanding that multiple
year data cannot be mingled without producing erroneous results.

There are a few items, related to awards, which are repeatable, and require special coding for the
rad_aid_code. Any record related to an award should have the fund, or award code, as part of the
code. For example, to store the cumulative amount of the Pell award, use the rad_aid_code of
PellCumAmt.

You should bridge all the active aid years for each student to the rad_aid_dtl using the code of
AIDYEAR.

You must bridge all active awards for each student to the rad_aid_dtl using the code AWARD.

You may also want to bridge an ENROLLSTATUS and AIDSTATUS for each student for
reporting purposes – but neither is required.

Any item that is a number will be stored in ASCII encoded digits, not as binary. Numeric items of
the same type (e.g. EstFamContrib) should be zero padded to the same length.

 Degree Works | Technical Guide 5.0.3.1 44

Sample information which might be extracted and bridged from the student system:

 Item Type Size Year
Specific

Notes

01 Year in College INTEGER Y 1st, 2nd
02 Terms Completed INTEGER Y #
03 Enrollment Status CHAR 2 Y Full Time, Part time
04 Class Level CHAR 2 Y FR, SO
05 Program Type CHAR 12 Y 5-year, AS, BA, non-degree

seeking

06 SAP Status CHAR 2 Y Probation, Suspension
07 Citizenship CHAR 2 Y US, Eligible, Not
08 TAP Payments INTEGER Y #
09 TAP Pts Used INTEGER Y #
10 TAP Waiver Flag CHAR 1 Y Y/N
11 TAP Waiver Term CHAR 12 Y Term
12 TAP Waiver Date DATE Y Date
13 Award Source CHAR 12 Y Pell, ACG, etc
14 Award Type CHAR 12 Y Federal, State, Institution
15 Cumulative Award Amount INTEGER Y Cumulative, no decimal
16 Current Award Amount INTEGER Y This year, no decimal
17 Secondary Program of Study CHAR 12 N Rigorous
18 Previous Undergrad Experience CHAR 1 Y Y/N
19 Pell Recipient CHAR 1 Y Y/N
20 Residence CHAR 4 Y State, County, Non
21 Matriculated CHAR 1 Y Y/N
22 1st time enrollment term CHAR 12 N Term TAP
23 Disability Code CHAR 4 Y 3C TAP
24 Estimated Family Contribution INTEGER Y EFC
25 Education Level CHAR 4 Y HS, Some College, BA
26 Dependency CHAR 2 Y Dep / Indep

The screenshot that follows is of a section from the Student Data Report Worksheet showing the
financial aid information extracted and bridged from the student system:

 Degree Works | Technical Guide 5.0.3.1 45

Athletic Eligibility Audit
In addition to Academic and Financial Aid audits, you can run Athletic Eligibility audits. Rules for
Athletic Eligibility are built using Scribe. Processing an athlete’s athletic data against these
requirement blocks will verify if a student is eligible to participate in the sport, in accordance with
rules laid out by the NCAA, NJCAA, and other organizations.
This process is very similar to that of the Academic Audit. Some special notes pertinent to the
Athletic Eligibility Audit are detailed in the sections that follow.

CreditsAppliedTowardsDegree
The Credits Applied Towards Degree calculation is important for Athletic Eligibility for two
reasons:
A) to support the 40/60/80 rule
B) to present an accurate progress bar on the worksheet.
The Credits Applied Towards Degree calculation obviously does not count any credits placed into
the Over-The-Limit section (also referred to as Not Counted) but when counting Fall Through
(also referred to as Electives) credits, the calculation is more complicated. For most schools, the
Gen Ed and Major blocks do not account for all of the credits the student needs to take to
graduate. In most cases the student does have to take (non-major) elective credits that appear in
the Fall Through section of the audit. However, while some elective credits are required, the
student should not take more than that which is required. It is these “excess” elective credits that
cannot be counted as Credits Applied Towards Degree.
If credits applied to a block are greater than the credits required, then we use the credits applied.
For example, if the major block requires 50 credits but it contains several credit range rules (for
example, 6:8 Credits in …) it is possible that the student will actually apply more than 50 credits
to the major. These extra credits applied to the major should be subtracted from the elective (fall-
through) credits the student must/can take.
If credits are shared between two blocks then those credits are added to the total elective (fall-
through) credits the student must/can take. For example, if 7 credits are shared between the
major and Gen Ed blocks, the student must then apply 7 additional credits towards the degree –
and those additional credits must be taken as elective (fall-through) classes.
In order to correctly calculate how many elective credits are allowed/needed for the degree, each
block must have a block header credits qualifier. In some cases, however, you may not want to
specify a fixed value – perhaps because of several credit range requirements or because of
variable credit classes. In this situation you may use the Pseudo keyword to essentially hide this
requirement from the user. For example:
 31 Credits Pseudo # informational only – not checked by the auditor
The auditor ignores this qualifier when checking to see if the block is complete but will use this
credit value when figuring out how many electives are needed to satisfy the overall degree
credits. If you have a block that does not represent any credits you can use “0:1 Credits Pseudo”.
The credits for a block containing the Optional header qualifier are not included in the calculation

Example 1:
In this situation, the student needs 120 credits to graduate with 98 (50 + 30 + 18) credits coming
from required blocks. This means the student must take 22 elective (fall-through) credits in order
to meet the 120 required by the degree. However, if the student has more than 22 credits in fall-
through the auditor will not count those “excess” credits giving a better measure of how close the
student is to reaching the 120 credit goal.

 Degree Works | Technical Guide 5.0.3.1 46

Degree Block: 120 hrs required to graduate
General Education Block: 50 hrs
Major Block: 30 hrs
Conc Block (required by major): 18 hrs

Example 2:
In this situation, the student needs 120 credits to graduate with 100 (50 + 50) credits coming from
required blocks; the Minor was added by the student but is not required by the degree or by the
major. This means the student must take 20 elective credits in order to meet the 120 required by
the degree. However, since the Minor block is not required any classes applying to the Minor are
considered as “elective” credits for this calculation – along with any appearing in fall-through. As
soon as the student applies more than 20 credits to the Minor and fall-through the extra credits
are considered “excess” and are not counted towards degree completion. So if the student has 25
credits applying to the Minor and 10 showing in fall-through only 20 of these 35 credits will be
counted.

Degree Block : 120 hrs required to graduate
General Education Block : 50 hrs required
Major Block : 50 hrs required
Minor Block (voluntary) :30 hrs required

Example 3:
In this situation, the student also needs 120 credits to graduate but 5 credits are being shared
between two required blocks.

Degree Block : 120 hrs required to graduate
General Education Block: 50 hrs
Major Block : 30 hrs
Minor Block (required) : 20 hrs

Since 5 credits are shared between major and minor the student must take 25 elective credits
instead of only 20.

Example 4:
In this situation, the student needs 120 credits to graduate with 100 (50 + 50) credits coming from
required blocks. The Conc is included (called in) by the Major and so the Conc credits are not
counted twice. The Major block’s credits required and credits applied values include those credits
from the Conc block. For this reason, the Gen Ed and Major block are only included when
calculating the credits required. This means that the student must take 20 elective credits in order
to meet the 120 required by the degree.

 Degree Block : 120 hrs required to graduate
 General Education Block: 50 hrs required
 Major Block : 50 hrs required
 Conc Block
 (included by major) : 15 hrs required

 Degree Works | Technical Guide 5.0.3.1 47

In the Class Summary report, any fall-through credits not being counted against degree
completion are marked with an “excess” notation.

Completed Term Count
For “completed terms” we only count terms since the first full-time term. So when we are asking if
a student is entering the 5th semester, we need to count the completed terms since that first full-
time term – but summer terms don’t count. The terms may also be transfer terms or in-resident
terms.

Additionally, the first full-time term cannot precede the first official term as bridged to Degree
Works on the rad_custom_dtl as AEAFIRSTTERM. For Banner schools this is mapped from the
first date of attendance as recorded in SGRATHE. For non-Banner schools this value needs to be
the first term you want Degree Works to consider in the term count calculation. The issue here is
that high school students who have taken college classes may have transfer work recorded in the
system, but the terms for these classes cannot count for athletic eligibility. This AEAFIRSTTERM,
or first date of attendance, must represent post-high school terms. For reporting purposes, an
AEAFIRSTDATE value must also be bridged to the rad_custom_dtl with a date in the form of
ccyymmdd (for example, 20101231 for Dec 31, 2010). This value appears on the worksheet to
aid the user in understanding the calculations performed.

Banner schools should ensure you record the student athlete’s first date of attendance at any
college/university in the SGRATHE_ATTEND_FROM_DATE field. If you are on Banner 7.x,
SGRATHE does not exist. Because of this, Degree Works cannot pull this first date/term of
attendance and will have to calculate it using the data it has – starting at the first term it finds
which could be data from the student’s high school coursework. However, if you can store the
AEAFIRSTTERM in some other place in Banner, you can set up a UCX-BAN080 record to pull it
over.

As part of the 6/18/24 hour rule, the full-time term also comes into play – but only with regard to
the 6 hour rule. When we look at the previous term attended, we have to go backwards in time
until we find the first full-time term. For the 18 hour and 24 hour rules, however, the terms may
be part-time or full-time terms.

Remedial Credits in First Year
An additional rule is that no more than 6 earned credits can be counted in the first year – and
none can be counted after the first year.
Review:

• 6 credits earned in the previous term

 Degree Works | Technical Guide 5.0.3.1 48

• 18 credits earned in the previous two terms – or the previous academic year
• 24 credits earned in the first year

For the 6-credit rule – a check is performed to see if that previous term is in the first year; if it is
up to 6 credits remedial are allowed; if it is not in the first year then no remedial credits are
allowed.
For the 18-credit rule – a check is performed to see if the previous 2 terms are in the first year; if
they are up to 6 credits remedial are allowed; if they are not in the first year then no remedial
credits are allowed. Same idea applies when counting the previous year credits.
For the 24-credit rule –up to 6 credits remedial are allowed.
Remedial classes are those with a course number below 100 (eg: MATH 99, ENGL 098) or start
with a zero (eg: ART 01224, ANTH 0893).

First Year Earned Credits
A small difference to the calculation for FirstYearEarnedCredits is that the auditor also counts all
credits earned prior to the first official term in the first year. This means that transfer credits
earned prior to the first year are counted – but the auditor includes credits for all terms (including
summer terms) prior to the first term – transfer or not. In addition, summer terms in the first year
are also counted. The top of the Diagnostics Report has information that details how this
calculation was made for the given student.

Transfer Student-Athletes
The requirements for determining if a transfer student-athlete is eligible to compete at the
certifying institution are complex. For example, there are a lot of different rules depending upon
whether the student-athlete is a qualifier or non-qualifier through the NCAA and whether they are
coming from a 2-year institution or a 4-year institution and these often need to be evaluated on a
case by case basis. At this time, the Athletic Eligibility audit does not evaluate whether the
transfer student-athlete meets these specific transfer regulations. This verification needs to be
done by the institution. However, once the transfer student-athlete has been determined eligible
to compete at the certifying institution, an Athletic Eligibility audit can be generated on the
student-athlete to certify they meet the general eligibility requirements.

Football Rule
We recommend you place the football rule into its own ATHLETE=FOOTBALL block with an if-
statement around your set of rules. If the student is not a football player (that is, does not have
FOOTBALL as a sport), the subset will be removed from this block. The auditor recognizes this
situation and marks the block as not-needed and the block is hidden from the worksheet display.
This means that this FOOTBALL block will be included for all athletes but will only display on the
worksheet for true football players.

if (SPORT=FOOTBALL) then
 BeginSub
 # Place your requirements here; see sample rules below in this
document
 EndSub
 Label “Football: 9 credits in fall”;
Remark “Football players must earn 9 credits in the prior fall season.";

The NCAA states that the student can only regain eligibility one time. Degree Works does not

 Degree Works | Technical Guide 5.0.3.1 49

keep track of whether or not the student has already regained eligibility, believing the compliance
office on your campus keeps track of this information. Degree Works can tell you if the student
has earned 27 credits in the last year, but it is the compliance office which is the final word on
whether the student really is allowed to regain eligibility.

Furthermore, the 9 HR/APR E Point status is displayed in the factoids section of the report for
students who have SPORT=FOOTBALL on the custom-dtl table. This can be hidden by setting
the vShowFootballStatus variable in the stylesheet. The status appears as either Passed or
Failed. If the student’s active term is a fall term then the status is determined based on the
completeness of all ATHLETE blocks: if all blocks are complete then the status appears as
Passed; otherwise it appears as Failed. If the active term is not a fall term then the status is
pulled from the dap_student_mst’s dap_aea_status field via the UCX-SCR002 AEASTATUS
record. You need to create an AEASTATUS record using element number 2407 if you don’t have
one already. When an audit is run in a fall term the status calculated based on the completeness
of the ATHLETE blocks is saved to the dap_student_mst.

In short:

If the audit term is FALL: status is based on completeness of ATHELETE blocks and saved to the
database.

If the audit term is not FALL: the status shown is based on what was saved to the database in the
previous fall term.

If for some reason no status is found in the database or it is neither PASSED nor FAILED the
report will show “(unknown)”. This situation will happen for your initial set of audits until you have
run audits in a fall term.

ATHLETIC ELIGIBILITY KEYS:

SDATHAUD – Allow Athletic Eligibility tabs
SDATHREV – Allow viewing of Athletic Eligibility audits
SDATHRUN – Allow processing new Athletic Eligibility audits
SDATHHIS – a picklist of the historic audits for the student will appear
SDATHDEL – allow deletion of historic audits
AUDFREEZ – allow freezing of saved audits
AUDDESCR – allow entering/modifying description on a saved audit
SDWEB55 – Athletic Eligibility Worksheet
SDWEB56 – Athletic Eligibility Worksheet combined with Academic Audit Worksheet

These keys assigned to the ATHL user-class (shp group) – you may add or delete keys in
SHPCFG

AUDIT NOTES:
1. The In-progress checkbox should always be checked as the current classes are required.

The Preregistered checkbox should always be unchecked - the future classes are never
wanted for an athletic audit.

2. Athletic Eligibility history follows the same UCX-CFG020DAP14 History Depth setting when
saving audits – if the depth is set to 3 you have 3 degree audits and 3 athletic audits.
However, you may choose to save an unlimited number of frozen audits.

3. When an Athletic Eligibility audit is run, all ATHLETE blocks are used. The catalog year and
other secondary tags are checked.

4. The ATHLETE blocks appear on the worksheet sorted by their block titles. You can alter the
block title to get the blocks in the order you want them to appear.

5. For Athletic Audits, the previous term is set to term prior to the active term when the active
term is a summer term. When you have chosen to include in-progress classes in the audit the

 Degree Works | Technical Guide 5.0.3.1 50

previous term is set to the active term; otherwise the previous term is the term prior to the
active term. Including in-progress classes allows you to forecast for future eligibility.

SCRIBE NOTES:
1. ATHLETE blocks house athletic eligibility requirements.
2. When an Athletic Eligibility audit is run, all ATHLETE blocks are used. You may create a

single ATHLETE block or create multiple to separate out the different eligibility rules.
3. The ATHLETE block values are controlled by UCX-AUD031.
4. See the Scribe templates in the RULE examples section below to help you quickly and easily

create your ATHLETE blocks.

UCX TABLES:

1. UCX-STU016 – The Term Type field must be set to "SUMMER" for summer terms, “FALL” for

fall terms, “SPRING” for spring terms and “WINTER” for winter terms.
2. UCX-AUD031 houses ATHLETE codes used by Scribe when saving new blocks. You need

to populate UCX-AUD031 to see the new codes appear in Scribe.
3. UCX-STU350: The Full-time Credits field must be populated for each school
4. UCX-SCR002: See the section below title “UCX-SCR002 Setup” on the records needed here.
5. UCX-BAN080 – Used to provide sql statements to extract athletic information from Banner

into Degree Works. If you are a non-Banner and non-Colleague site and use RAD11 to
bridge student information, you need to alter your extract to obtain information about your
student athletes. You will bridge the data into the rad_custom_dtl. See the “Data Structures”
section below for the data that needs to be bridged in.

Suggested entries for UCX-BAN080 ACADSTANDING:
BAN080ACADSTANDING:COLUMN SHRTTRM_ASTD_CODE_END_OF_TERM
BAN080ACADSTANDING:ORDERBY SHRTTRM_ASTD_CODE_END_OF_TERM
BAN080ACADSTANDING:TABLE SHRTTRM a
BAN080ACADSTANDING:WHERE_1 a.SHRTTRM_TERM_CODE =
BAN080ACADSTANDING:WHERE_2 (SELECT MAX(b.SHRTTRM_TERM_CODE)
BAN080ACADSTANDING:WHERE_3 FROM SHRTTRM b
BAN080ACADSTANDING:WHERE_4 WHERE b.SHRTTRM_PIDM = a.SHRTTRM_PIDM)

Suggested entries for UCX-BAN080 SPORT:
BAN080SPORT:COLUMN SGRSPRT_ACTC_CODE
BAN080SPORT:ORDERBY SGRSPRT_ACTC_CODE
BAN080SPORT:TABLE SGRSPRT a
BAN080SPORT:WHERE_1 a.SGRSPRT_SPST_CODE = 'AC'

These ACADSTANDING and SPORT records (along with those built in UCX-SCR002) allow
you to Scribe an IF-statement against these codes. To get the Academic Standing description
and the Sport description to appear on the report you should create additional UCX-BAN080
entries to pull the corresponding descriptions from the Banner STV tables. The Athletic
Eligibility worksheet will look for ACADSTANDESC and SPORTDESC report entries and will
display them if found. If they are not found the corresponding ACADSTANDING and SPORT
custom entries will be used.

BAN080ACADSTANDESC:REPORT STVASTD
BAN080ACADSTANDESC:COLUMN SHRTTRM_ASTD_CODE_END_OF_TERM
BAN080ACADSTANDESC:ORDERBY SHRTTRM_ASTD_CODE_END_OF_TERM
BAN080ACADSTANDESC:TABLE SHRTTRM a
BAN080ACADSTANDESC:WHERE_1 a.SHRTTRM_TERM_CODE =
BAN080ACADSTANDESC:WHERE_2 (SELECT MAX(b.SHRTTRM_TERM_CODE)
BAN080ACADSTANDESC:WHERE_3 FROM SHRTTRM b
BAN080ACADSTANDESC:WHERE_4 WHERE b.SHRTTRM_PIDM = a.SHRTTRM_PIDM)

 Degree Works | Technical Guide 5.0.3.1 51

BAN080SPORTDESC:REPORT STVACTC
BAN080SPORTDESC:COLUMN SGRSPRT_ACTC_CODE
BAN080SPORTDESC:ORDERBY SGRSPRT_ACTC_CODE
BAN080SPORTDESC:TABLE SGRSPRT a
BAN080SPORTDESC:WHERE_1 a.SGRSPRT_SPST_CODE = 'AC'

Ensure that you grant access to these tables for the Degree Works Banner-db user.

Batch Audits
You can run batch Athletic Eligibility Audits from DAP22 in Transit like you do with Academic
Audits. Choose Athletic Eligibility Audit as the audit type as the first question on the Questions
section. You can choose to have them converted to PDF and choose RPT55 – the Athletic
Eligibility report. You can also freeze the new audits you run by choosing a freeze type.

On the Selection tab, you can select any student but it makes sense to select your student
athletes. This can most easily be done by searching on students with a SPORT record on the
rad_custom_dtl – but you may decide to use additional criteria as needed.

 Degree Works | Technical Guide 5.0.3.1 52

Athletic Eligibility Scribe Words
 Alias Data Source
These are allowed in an IF-statement in an Athletic Eligibility audit - usually in an ATHLETE
block:
CompletedTermCount TermCount Includes the current, in-progress

term; starting at the first full-time
term; either in residence or as a
transfer; does not count summer
terms

TotalCreditsEarned TotalCreditsCompleted rad_term_dtl.rad_cum_tot_earn
ResidenceCreditsEarned ResidenceCreditsComplet

ed
rad_term_dtl.rad_cum_cr_earn

TotalCreditsAttempted CreditsAttempted rad_term_dtl.rad_cum_gr_att
ResidenceCompletedTermCount Count the terms in residence –

starting at the first full-time term.
Does not include summer terms.

DegreeCreditsRequired CreditsRequired Credits required from starting block -
allowed on right-hand-side of an IF-
statement as well as the left-hand
side

CreditsAppliedTowardsDegree Total credits applied towards degree
completion. Takes into account the
special elective credits
allowed/needed discarded the excess
fall-through credits.

PreviousTermEarnedCredits After 4th full-time term these must be
degree applicable credits. Previous
term must be full-time but can be the
in-progress term. Does not include
summer terms.

PreviousTermEarnedCredits-Fall Earned credits for the previous fall
term. The Football rule dictates that
the student must have earned 9
semester credits in the previous fall
term.

Previous2TermsEarnedCredits After 4th full-time term these must be
degree applicable credits. Previous 2
terms can include the current in-
progress term – and both can be
part-time or full-time terms. Does not
include summer terms.

Previous3TermsEarnedCredits After 4th full-time term these must be
degree applicable credits. Previous 3
terms can include the current in-
progress term – and all can be part-
time or full-time terms. Does not
include summer terms.

PreviousAcademicYearEarnedCre
dits

 After 4th full-time term these must be
degree applicable credits. Does not
include summer terms.

PreviousFullYearEarnedCredits Includes fall, winter, spring and
ending summer term credits. Needed
for the Football rule.

 Degree Works | Technical Guide 5.0.3.1 53

FirstYearEarnedCredits Credits earned in the first full
academic year. If first term is summer
it is counted. The summer ending
term of that year is also counted.

RULE examples

#-- 6/18/24 Rule

#-- 6 credits earned in the previous term

if (PreviousTermEarnedCredits >= 6) then

 RuleComplete

 Label 6a "Previous Term - at least 6 credits earned required"

else

 RuleIncomplete

 ProxyAdvice "You did not earn 6 credits your previous term"

 Label 6b "Previous Term - at least 6 credits earned required";

#-- 18 credits earned in the previous year

for Semester schools

if (CompletedTermCount <= 1) then

 RuleComplete

 Label 18a "2 terms have not yet been completed"

else if (Previous2TermsEarnedCredits >= 18 or

 PreviousAcademicYearEarnedcredits >= 18) then

 RuleComplete

 Label 18b "Previous Year: at least 18 credits earned required"

else

 RuleIncomplete

 ProxyAdvice "You did not earn 18 credits your previous year"

 Label 18c "Previous Year: at least 18 credits earned required";

for Quarter schools

if (CompletedTermCount <= 2) then

 RuleComplete

 Label 18e "3 terms have not yet been completed"

Else if (Previous3TermsEarnedCredits >= 27 or

 PreviousAcademicYearEarnedcredits >= 27) then

 RuleComplete

 Label 18f "Previous Year: at least 27 credits earned required"

else

 RuleIncomplete

 ProxyAdvice "You did not earn 27 credits your previous year"

 Degree Works | Technical Guide 5.0.3.1 54

 Label 18g "Previous Year: at least 27 credits earned required";

#-- 24 credits earned in the first year

if (FirstYearEarnedCredits >= 24) then

 RuleComplete

 Label 24a "First Year: at least 24 credits earned required"

else

 RuleIncomplete

 ProxyAdvice "You did not earn at least 18 credits your First Year"

 Label 24b "First Year: at least 24 credits earned required";

#-- 40/60/80 Rule

#-- 80% complete with course requirements by start of 5th year

if (CompletedTermCount >= 8 And

 CreditsAppliedTowardsDegree >= 80% of DegreeCreditsRequired) then

 RuleComplete

 Label 80a "80% complete by start of 5th year"

else if (CompletedTermCount >= 8) then

 RuleIncomplete

 ProxyAdvice "You did not complete 80% by the start of the 5th year"

 Label 80b "80% complete by start of 5th year"

#-- 60% complete with course requirements by start of 4th year

Else if (CompletedTermCount >= 6 And

 CreditsAppliedTowardsDegree >= 60% of DegreeCreditsRequired) then

 RuleComplete

 Label 60a "60% complete by start of 4th year"

else if (CompletedTermCount >= 6) then

 RuleIncomplete

 ProxyAdvice "You did not complete 60% by the start of the 4th year"

 Label 60b "60% complete by start of 4th year"

#-- 40% complete with course requirements by start of 3rd year

Else if (CompletedTermCount >= 4 And

 CreditsAppliedTowardsDegree >= 40% of DegreeCreditsRequired) then

 RuleComplete

 Label 40a "40% complete by start of 3rd year"

else if (CompletedTermCount >= 4) then

 RuleIncomplete

 ProxyAdvice "You did not complete 40% by the start of the 3rd year"

 Label 40b "40% complete by start of 3rd year"

else # not yet started 3rd year

 RuleIncomplete

 ProxyAdvice "By the start of your 3rd year you need to be 40% complete"

 Degree Works | Technical Guide 5.0.3.1 55

 Label 3rd "3rd year not started ";

90/95/100 GPA Rule

#-- Entering 2nd year - GPA must be at least 90% of 2.0

If (CompletedTermCount <= 3 and SISGPA >= 1.8) then

 RuleComplete

 Label GPA-1 "Entering 2nd year - GPA must be at least 1.8"

Else If (CompletedTermCount = 3 and SISGPA < 1.8) then

 RuleIncomplete

 ProxyAdvice "Your GPA is less than 1.8 - you are ineligible"

 Label GPA-2 "Entering 2nd year - GPA must be at least 1.8"

Else If (CompletedTermCount < 3 and SISGPA < 1.8) then

 RuleIncomplete

 ProxyAdvice "Your GPA needs to be at least 1.8 by the start "

 ProxyAdvice "of your 3rd term."

 Label GPA-3 "Entering 2nd year - GPA must be at least 1.8"

#-- Entering 3rd year - GPA must be at least 95% of 2.0

Else If (CompletedTermCount <= 5 and SISGPA >= 1.9) then

 RuleComplete

 Label GPA-4 "Entering 3rd year - GPA must be at least 1.9"

Else If (CompletedTermCount <= 5 and SISGPA < 1.9) then

 RuleIncomplete

 ProxyAdvice "Your GPA is less than 1.9 - you are ineligible"

 Label GPA-5 "Entering 3rd year - GPA must be at least 1.9"

#-- Entering 4th year - GPA must be at least 2.0

#-- And beyond 4th year also

Else If (CompletedTermCount >= 6 and SISGPA >= 2.0) then

 RuleComplete

 Label GPA-6 "4th year and beyond - GPA must be at least 2.0"

Else If (CompletedTermCount >= 6 and SISGPA < 2.0) then

 RuleIncomplete

 ProxyAdvice "Your GPA is less than 2.0 - you are ineligible"

 Label GPA-7 "4th year and beyond - GPA must be at least 2.0";

#-- Before 3rd year - degree/major must be declared

If (NumMajors >= 1) then # regardless of how many terms have been completed

 RuleComplete

 Degree Works | Technical Guide 5.0.3.1 56

 Label Major1 "Declare a degree/major by 3rd year"

else if (CompletedTermCount < 5) then

 RuleIncomplete

 ProxyAdvice "You need to declare a degree/major by your Third Year"

 Label Major2 "Declare a degree/major by 3rd year"

else # student has already started her 3rd year

 RuleIncomplete

 ProxyAdvice "You did not declare a degree/major by your Third Year"

 Label Major3 "Declare a degree/major by 3rd year";

Student must be in good academic standing

if (AcadStanding = "GOOD") then

 RuleComplete

 Label 1 "You must be in good academic standing"

else # not so good

 RuleIncomplete

 Proxyadvice "You are currently not in good academic standing"

 Label 2 "You must be in good academic standing";

############# Football rule - 9 credits in prior fall season

Begin

;

Remark "Football players must earn 9 credits in the prior fall season.";

Remark "You can regain eligibility if you earn 27 credits before the";

Remark "next fall season (includes summer term credits). ";

If the student does not have FOOTBALL as a SPORT this block will be

hidden from the worksheet.

if (SPORT=FOOTBALL) then

 BeginSub

 if (PreviousTermEarnedCredits-Fall < 9) then

 RuleIncomplete

 ProxyAdvice "You did not earn at least 9 credits in your last fall term"

 Label "Earned less than 9 credits last fall"

 else # if (PreviousTermEarnedCredits-Fall >= 9) then

 RuleComplete

 Label "Earned at least 9 credits last fall";

 # ResidenceCompletedTermCount does not count summer terms

 # FirstYearEarnedCredits includes prior and ending summer terms

 # PreviousFullYearEarnedCredits includes ending summer

 if (PreviousTermEarnedCredits-Fall < 9) then

 # If a 1st year student and not enough credits

 Degree Works | Technical Guide 5.0.3.1 57

 if (ResidenceCompletedTermCount < 3 and

 FirstYearEarnedCredits < 27) then

 RuleIncomplete

 ProxyAdvice "You earned less than 27 credits and thus did not"

 ProxyAdvice "regain eligibility"

 Label "1st year: less than 27 credits"

 # If a 1st year student and has enough credits

 else If (ResidenceCompletedTermCount < 3 and

 FirstYearEarnedCredits >= 27) then

 RuleComplete

 Label "1st year: at least 27 credits; regained eligibility"

 # If past 1st year and not enough credits

 else If (ResidenceCompletedTermCount >= 3 and

 PreviousFullYearEarnedCredits < 27) then

 RuleIncomplete

 ProxyAdvice "You earned less than 27 credits and thus did not"

 ProxyAdvice "regain eligibility"

 Label "Less than 27 credits this past year"

 # If past 1st year and has enough credits

 else If (ResidenceCompletedTermCount >= 3 and

 PreviousFullYearEarnedCredits >= 27) then

 RuleComplete

 Label "27 credits in the last year; regained eligibility"

 else # just in case

 RuleIncomplete

 ProxyAdvice "Unexpected situation; need to review 27 credit requirement"

 Label "27 credits check; should never see this";

 EndSub

 Label "Football: 9 credits in fall";

Quarter schools should change 9 to 8 above

Quarter schools should change 27 to 40 above

Quarter schools may also want to change the term count

End.

These may also be useful...

if (DegreeCreditsRequired >= 120) then

if (CreditsAppliedTowardsDegree >= 48) then

 Degree Works | Technical Guide 5.0.3.1 58

Data Structures for the Athletic Eligibility Audit
You need to bridge each student’s Academic Standing description to the rad_REPORT_dtl with a
code of ACADSTANDESC and the Academic Standing value to the rad_CUSTOM_dtl with a
code of ACADSTANDING. The description will appear in the header of the worksheet while the
value can be used in any IF-statement that you may have scribed. If ACADSTANDESC
description is not found, the worksheet will use the ACADSTANDING code on the
rad_CUSTOM_dtl.

You also need to bridge each student’s participating Sport description to the rad_REPORT_dtl
with a code of SPORTDESC and the Sport value to the rad_CUSTOM_dtl with a code of
SPORT. The description will appear in the header of the worksheet while the value can be used
in any IF-statement that you may have scribed. If the student is participating in more than one
sport activity then bridge each sport as a different rad_custom_dtl and rad_report_dtl record. If
SPORTDESC description is not found, the worksheet will use the SPORT code on the
rad_CUSTOM_dtl.

The Athletic Eligibility worksheet has a special section devoted to specific, significant data related
to athletic eligibility. Below the special section a progress bar appears. This progress bar is
directly related to the calculations performed for the 40-60-80 rule and accounts for elective
credits allowed/needed. The data feeding this progress bar is specifically calculated for athletic
eligibility and therefore differs from the data feeding the progress bar on the academic audit
worksheet.

At least four values must be bridged to the rad_custom_dtl.

ACADSTANDING – indicates if the student is in good academic standing

AEAFIRSTTERM – first official term that can be counted; mapped from first date of attendance;
this date is stored on SGRATHE for Banner schools

AEAFIRSTDATE – first official date of attendance; this date is stored on SGRATHE for Banner
schools

SPORT – one or more participating sports; this value is stored on SGRSPRT for Banner schools
Multiple SPORT values can be bridged if the student is participating in multiple sports.

 Degree Works | Technical Guide 5.0.3.1 59

Two values should be bridged to the rad_report_dtl. If they are not found the corresponding
values from the rad_custom_dtl will be used for the worksheet display.

ACADSTANDESC – description - indicates if the student is in good academic standing

SPORTDESC – one or more participating sport descriptions; this value is stored on SGRSPRT
for Banner schools

Multiple SPORTDESC values can be bridged if the student is participating in multiple sports.

The top of the Diagnostics Report can be very helpful in understanding why rules in your
ATHLETE blocks were marked as complete or as unsatisfied. The “type” of data is listed on the
far left of this grid. Those types in all UPPERCASE letters indicate those that are directly related
to a Scribe reserved word you may use in an IF-statement. Those in MixedCase are used in
internal calculations and appear here merely to assist you in understanding the data.

Credits – this field contains the credits value for this type

Text – describes the data for this type

Term – the term value used in this calculation

TermType – the type of term as specified on UCX-STU016

 Degree Works | Technical Guide 5.0.3.1 60

In addition to the data above, the Diagnostics Report for athletic audits also contains a summary
of classes by term. When applicable, a notation next to each term appears to connect the
information above to a specific term.

 Degree Works | Technical Guide 5.0.3.1 61

UCX-SCR002 Setup

Create a SPORT record which looks similar to the one shown in the screenshot that follows. The
SPORT record is needed if you will be scribing against the sport code and is also needed to
gather the data for display on the worksheet.

 Degree Works | Technical Guide 5.0.3.1 62

Create an ACADSTANDING record which looks similar to the one shown in the screenshot that
follows. You most likely will be scribing against the academic standing and so you will probably
need this record. This too is displayed on the worksheet (Ensure the Value field has the ending
“G” – which is hidden below.)

 Degree Works | Technical Guide 5.0.3.1 63

Create an AEAFIRSTTERM record which looks similar to the one shown in the screenshot that
follows. You most likely will not be scribing against this value but this record is still needed so that
the value can be passed to the auditor to be uses when calculating the term count. (Ensure the
Value field has the ending “M” – which is hidden below.)

 Degree Works | Technical Guide 5.0.3.1 64

Create an AEAFIRSTDATE record which looks similar to the one shown in the screenshot that
follows. You most likely will not be scribing against this value but this record is still needed so that
the value can be passed to the worksheet for display. (Ensure the Value field has the ending “E”
– which is hidden below.)

 Degree Works | Technical Guide 5.0.3.1 65

Create an AEASTATUS record which looks similar to the one shown in the screenshot that
follows. You most likely will not be scribing against this value but this record is still needed so that
the value can be passed to the worksheet for display. If you do not want to show the Football 9
HR/APR E Point value on the report you do not need to add this record.

 Degree Works | Technical Guide 5.0.3.1 66

Class Summary report
At the top of the Athletic Eligibility page there is a “Class Summary” link. This report is like the
Class History report on the worksheets tab but it gives you summary information for each term.
The term information appears on the left and the cumulative information appears on the right. In
addition, you can place your mouse cursor over the grade for each class to see a hint showing
useful details about the class.

This information is the same data which appears on the Diagnostics Report. The credit value
appearing for each class is normally the credits earned except for the cases of incomplete/in-
progress classes – this value is then the credits attempted.

The bottom of the Class Summary report shows a GPA Tracker. This section gives a great view
of how the student’s term and cumulative GPA has changed over time.

 Degree Works | Technical Guide 5.0.3.1 67

Freezing Audits
Freezing audits so they don’t get deleted
The UCX-CFG020 DAP14 Audit History Count setting controls how many audits to keep per
student. When a new audit is processed, Degree Works will delete the oldest audit to ensure this
history count is obeyed. However, there are certain times when you want to keep particular audits
that do not get deleted you can freeze those audits.

Enabling audit freezing
You can allow users to freeze audits by setting the UCX-CFG020 WEB Allow Audit Freezing flag
to Y. Additionally, you can allow users to enter a description when running new audits by setting
the Allow Audit Description flag to Y. Users can choose to enter a description on audits but not
freeze them, or vice versa. However, normally your users may want to only enter a description
when freezing audits –it is recommended that you establish a best practice for your institution.

Only those users who have been given the AUDFREEZ key will be allowed to freeze audits.
Additionally, only users with the AUDDESCR key will be able to enter a description on audits. By
default the REG, ATHL, and AID user-classes are given these keys. You can use SHPCFG to
add or remove these keys on user-classes as needed.

Enabling audit freezing on What-If audits
For what-if audits the keys are WIFFREEZ and WIFDESCR to allow the freezing of audits and to
allow users to enter a description. Neither of these keys are assinged to any user-classes by
default. Additionally, saving of what-if audits must be enabled by setting the UCX-CFG020
DAP14 What-if History Count value to a number greater than or equal to “01”. When this setting is
blank or “00” no what-if audits are saved and thus none can be frozen.

Setting up freeze types
When an audit is frozen, the user specifies a freeze type. The freeze type not only specifies that
the audit is frozen but also gives an indication as to why is was frozen. The UCX-AUD032 table
contains a list of the valid freeze types that your institution is using. This table is initially installed
with a set of example freeze types, but you can delete, modify, and add to this list as needed.
Each freeze type is associated with up to 10 user-classes. Only users in those user-classes will
be allowed to freeze audits with the given freeze type.

 Degree Works | Technical Guide 5.0.3.1 68

Entering a freeze type and description
When viewing the most recent audit on the Worksheets tab, users with the ability to freeze audits
or enter descriptions are given the option to do so. The select box of freeze types is restricted to
those set up in UCX-AUD032. However, if the current freeze type on an audit is not associated
with the current user’s user-class, the freeze type will still appear (selected) in the select box. This
allows the user to see the current freeze type and optionally change it to another freeze type.

The user can enter a description without choosing a freeze type, and can also enter a freeze type
without entering a description – both fields are optional. The user may un-freeze an audit by
choosing the “(not frozen)” option. These un-frozen audits will be deleted from the system when
new audits are generated.

On the History tab you can see who froze the audit and when it was frozen. You can also modify
the description and freeze type as needed. The description and freeze type also appear in the
header of the worksheet itself, so that users who do not have the ability to freeze audits or enter a
description can also see this information.

On the History tab you can also Delete any audit – whether it is frozen or not.

Freezing audits in a batch
Transit users may freeze audits and enter a description on audits when running DAP22 batch
audits. The list of freeze types that appear in Transit are those associated with the REG user-
class in UCX_AUD032. If you want all freeze types to appear in Transit, then ensure that all
freeze types have REG listed as one of the user-classes in Controller.

Deleting old audits
Frozen audits do not count against the history count value. The Audit History Count may be set to
“03”, for example, but a student may have several frozen audits and three non-frozen audits.
There is no limit on the number of frozen audits that can be kept for each student. For this

 Degree Works | Technical Guide 5.0.3.1 69

reason, it is important to limit the number of frozen audits that persist in your database for long
periods of time. Audits take up substantial space in your database and freezing many audits that
never get deleted will cause you to run out of space eventually. If you do decide to freeze audits,
you can consider reducing the history count value to 01 or 02 to help reduce the number of audits
saved.

You can have audits frozen with a freeze type of DEGAWD (Degree Awarded), for example, that
you do not want to delete but you may have frozen others that you only wanted to keep for a year
or two. You can use the dapdelaudits script to delete audits older than a specific date and
optionally specify a freeze type. If no freeze type is entered, only those non-frozen audits will be
deleted.

$ dapdelaudits 20091231
Audits older than 20091231 will be deleted.
By default only non-frozen audits will be deleted - but you may choose
 to delete specific audits with a particular freeze type.
Enter the freeze type (or just hit enter for non-frozen audits)? > TRMFAL
Deleting audits older than 20091231 with a freeze type of TRMFAL
Continue with delete? (y/N) >

You can supply the freeze type as the second parameter:

$ dapdelaudits 20091231 TRMFAL
Deleting audits older than 20091231 with a freeze type of TRMFAL
Continue with delete? (y/N) >

You can also supply a confirmation “Y” value as the third parameter to avoid the confirmation
message. This is useful when calling dapdelaudits from a script:

$ dapdelaudits 20091231 TRMFAL Y

You may also use AUD02 in Transit to delete audits in much the same fashion as using
the script.

 Degree Works | Technical Guide 5.0.3.1 70

GPA Calculations
All courses applied to each block are used to calculate the BLOCK GPA.
For the Degree Block (or the "starting" block), the GPA is calculated using all the courses applied
to the audit (all sections). The Over-the-Limit section can be included or excluded from this
calculation (see UCX-CFG020 DAP14 parameter) – but typically the setting is N so that these
classes to not count.

The Major and Minor Block GPAs will be calculated using all courses that are or could be
applied to this block. Courses that end up in "insufficient" or "fail" sections of the audit can be
included or excluded from the calculation (see UCX-CFG020 DAP14 parameters for Major and
Minor). Classes that could have applied to the Major or Minor block but ended up in the GENED
block, for example, will not count in the Major or Minor’s GPA calculation – unless the class is
being shared between blocks of course.

Redemption Algorithm
After the auditor completes its primary pass through the blocks and rules, it enters one of the last
phases of the degree audit process called the Redemption Algorithm. If the class was removed
from a rule by mistake, the algorithm works to make the correction. Either the class was removed
from a rule and ended up in the fall-through (electives) section, or it was removed from a rule that
is allowed to be shared with another rule which the class is also applying. A class is usually
removed from a rule because too many credits/classes are applied to a rule and the auditor
needs to reduce the number of classes that are applying. Later on, however, one or more of the
classes that were kept on the rule may then have to be removed for other reasons (max
qualifiers, class should be applied to another block, etc). It is this issue that the Redemption
Algorithm attempts to correct.

Fall-through Redemption
When evaluating fall-through classes, the auditor checks all the rules where each class was
originally applied at the start of the audit process. For each class, the auditor first examines fits
that were on group rules. When a group rule is found that is not complete, the auditor reapplies
this class and all other fall-through classes that also fit on this group rule. The auditor then
reevaluates the group rules to check if another group(s) option should be kept instead of the one
that was previously chosen.

Once the group logic has been performed and if the group rule on which the class was reapplied
was not chosen as the group rule to keep, the auditor continues inspecting the other fits for the
class. The auditor starts with the best fit for the class and works its way down to the least-best fit
– skipping all fits on group rules. Once an incomplete rule has been found, the class is reapplied
and no other rules are examined.

Each time a class is placed back on a rule, the Max qualifiers on that rule are reevaluated.

 Degree Works | Technical Guide 5.0.3.1 71

Nonexclusive Redemption
After the fall-through classes have been evaluated, the auditor attempts to find classes that are
not doing enough sharing based on the Nonexlusive (also referred to as ShareWith) qualifiers
found throughout the blocks. These classes already fit in one or more rules but are possibly
allowed to fit in one or more additional rules. For example, the Major rules can share the GenEd
block but HIST 1916 was removed from the GenEd for some reason. This step in the redemption
algorithm attempts to discover that this sharing is allowed and also attempts to reapply the class
to the GenEd block.

For this piece of the algorithm, the auditor steps through each class that is currently applying to at
least one rule. The list of the original fits from the start of the audit process is then inspected. This
list includes links between fits that indicate if sharing is allowed. The auditor uses the links to
check if it can reapply one or more of the fits for the class. When a class is reapplied to a rule, the
Max qualifiers on that rule are reevaluated.

After both the Fall-through and Nonexclusive parts of the Redemption algorithm are performed,
the auditor performs another check on the header qualifiers in all blocks. In addition, each rule’s
percent-complete is recalculated.

Too Many Classes on a Rule
At the start of the audit each class is placed on all requirements where the class fits. The auditor
then attempts to figure out the best place to keep the class, removing it from the other
requirements. In addition, when the auditor has found that too many classes are on a requirement
it steps through a set of decision points to determine which classes to keep and which to remove.
Each class is compared to each of the other classes on the rule with the auditor making a
decision to keep or remove based on the decision points.
For example, let’s say the rule has classes A, B, C, D and E but the rule only needs two of the
classes. The auditor first compares A and B. If it turns out that B is the better class, based on the
decision points, then A is marked as the one to remove. The auditor then compares A with C. If A
is now considered to be the better class then C is marked as the one to remove. This continues
on down the line until the last class is reached. At this point the auditor has determined which
class it the one to remove. If it was determined that class D was the worst out of the list, for
example, then D is removed and the cycle starts again comparing the remaining list of A, B, C
and E. Since only two classes are needed on the rule the auditor stops when there are two
classes remaining. These two remaining classes are the best classes to keep on the rule.
Below are the decision points the auditor uses when comparing two classes on a rule. The
auditor steps through each point finding that one of the classes is better than the other or finding
that they are equal for the given point. If they are equal only then does the auditor move to the
next decision point.
This is the list of decision points, in order. Based on each comparison, one class is kept and the
other is marked for removal. The one that is marked for removal is then compared to the next
class on the rule and so on. When a decision is made a code is recorded by the auditor and this
code shows up in the Diagnostics Report. This information helps you the user figure out why the
auditor made the decisions it did.

• Kept class in the including list (SQ)
• Kept class needed by MinAreas (SQ)
• Kept class needed by MinPerDisc (SQ)

 Degree Works | Technical Guide 5.0.3.1 72

• Kept class needed by MinSpread (SQ)
• Kept class that matches rule exactly (1 Class and 3 Credits in) (SQ)
• Kept class with Apply Here exception (li)
• Kept class that was completed over in-progress class (see UCX-CFG020 DAP14 flag)

(inpr)
• Kept class that originally only fit this rule and no other (e1f)
• Kept class that currently fits this rule and no other (1f)
• Kept class that is reapplied here from fall-through via Redemption (fara)
• Kept class based on Decide option - if specified (d45)
• Kept class that has more header MIN qualifiers that may have need this class (HMinQ)
• Kept class based on the fit rank (See Fit Rank section) (firk)
• Kept class that is less likely to be removed because of a header qualifier (dect)
• Kept class with fewer exclusive fits on other rules (exfi)
• Kept class with a higher match level (lvl)
• Kept class based on UCX-CFG020 TIEBREAK (tie)
• Kept class based on coin flip

Match Level
The match level is one of the decision points the auditor examines to help determine the best
location for the class and also which are the best classes to keep on a rule that has too many
classes. On each requirement, the match level is calculated based on how the requirement is
scribed.

• Exact match courses get a match level of 6; example: MATH 123
• Courses with a range get a match level of 5; example: MATH 100:199
• Courses with a wildcard number get a match level of 4: example: MATH 1@

However, these changes are then made to the match level:

• If an Apply Here exception is in place – level is set to 99
• If the course is in an Including list – level is set to 16; example: Including MATH 123
• If the course is in a plus-list list – level is set to 16; example: 2 Classes in MATH 123 +

124
• If the course is the only course listed - level is set to 16; example: 1 Class in MATH 123
• For each HighPriority on the block increase the level by 5
• For each HighPriority on the rule increase the level by 5
• For each LowPriority on the block decrease the level by 5
• For each LowPriority on the rule decrease the level by 5
• If the rule’s credit range starts with zero - level is set to 2; example: 0:9 Credits in…
• If the rule has the LowestPriority qualifier - level is set to -9876
• If the rule has a Force Complete exception - level is set to -99

The match level by itself does not determine which classes are removed or kept on rules that
have too many credits and it does not determine the requirement on which a class is placed when
the class fits on multiple rules, but is one of the decision points used.

Fit Rank
The fit rank is used by the auditor to determine where a class should be placed when it fits on
multiple requirements. The auditor uses the decision points below to either increase or decrease

 Degree Works | Technical Guide 5.0.3.1 73

the fit rank for a class on a particular requirement. The fits for a class are compared with each
other to determine which is the best. A fit with a rank of 1 means it is the best fit; a rank of 2
means it is the 2nd best fit, etc. However, it is possible for two fits to have the same rank -
meaning the two fits are equal when it comes to the decision points; neither fit is better than the
other. A fit with a higher rank (lower number) will be kept before one with a lower rank (bigger
number).
The auditor steps through these decision points in this order. Only when neither fit is determined
to better or worse does the auditor proceed to the next decision point.

• Fit is on a rule with a Force Complete exception - worse fit because we can remove the
class and the rule will still be complete

• Fit is on a StandAloneBlock - worse fit but only because we know all StandAloneBlock fits
will remain so some other fit should be considered a better fit

• Fit has an Apply Here exception - better fit because the class must be applied here no
matter what

• Fit is on a plus-list or including-list rule (and not in a group or a wildcard/range w/ multiple
fits) - better fit because the rule explicitly says the student must take this class

• Fit is on a rule with another class that only fits here - worse fit because most likely this
class will be removed from this rule in favor of the other class

• Fit's rule has a higher priority (per HighPriority, LowPriority, LowestPriority) - better fit
because of the priorities specified

• Fit is only class on this rule - and does not have LowPriority - better fit because this rule
needs this class; without it, the rule will be 0% complete

• Fit has a higher match level - better fit compared to the levels of other fits (which may be
on a range or a wildcard requirement etc)

• Fit is on a group rule that may not be needed - worse fit because by definition a group
rule is a list of options and this may not be the best option to take

• Fit is needed on the rule; removal would make rule incomplete - better fit because without
this class the rule will not be 100% complete

Group Procesing
When classes are matching multiple rules within a group the auditor must determine which of the
options to keep and which to discard. The auditor uses the set of decision points below to make
this decision. One important thing to keep in mind here is that the auditor does this group
processing early on in the audit and thus it is making decisions before sharing has been resolved
and before excess classes have been removed from requirements.
Here is the list of decision points to determine which groups to keep and remove:

• Keep the rule if it has an exception
• Keep the rule that has complete qualifiers (removing those rules with incomplete

qualifiers)
• Keep the rule if it is more complete than another rule
• Keep the rule that has at least one completed class if multiple rules are incomplete

because of in-progress classes
• Keep the rule that has a higher priority
• Keep the rule that is needed to satisfy the group's MinPerDisc qualifier
• Keep the rule whose classes have a higher average fit rank
• Keep the rule with fewer min/max qualifiers (since it a less complicated rule)
• Keep the rule whose classes have fewer fits on other rules (averaged over the number

of classes on the rule)

 Degree Works | Technical Guide 5.0.3.1 74

Removing classes when too many fit on a rule
When too many credits/classes are applied to a rule, the auditor needs to figure out which
classes to remove from the rule.

Example:

3 credits in MATH 101, ENGL 101, PSYC 101, HIST 101
 Label INTRO "One introduction-level class";

Let us assume these are all 3-credit classes.
Let us assume a case where a student has taken all 4 of these classes.
Let us assume that PSYC 101 is found out to be the best fit when comparing these four classes
for this student.

Again, we only need 3 credits. We take these 12 credits and ask ourselves, "which is the worst
fit"? We start by comparing two classes to one another. The order in which these are applied is
not important, as one can see below. For clarity's sake let us assume they are compared in the
order Scribed.

MATH 101 is first compared with ENGL 101

We use the "Remove excess classes" decision-process (this is near the bottom of every
Diagnostics Report) to compare these two classes. Inevitably, one is considered a "worse fit" than
the other. Let's say ENGL 101 is the worse fit. MATH 101 is kept (for now), and ENGL 101 is then
compared to PSYC 101. ENGL 101 is still worse than PSYC 101, then class C is kept (for now)
and ENGL 101 is compared to HIST 101. Let's say HIST 101 is worse than ENGL 101. Now there
are no more classes to compare.

So:
MATH 101 is better than ENGL 101
PSYC 101 is better than ENGL 101
ENGL 101 is better than HIST 101

This means that HIST 101 is the worst. We remove it from the rule. We have not compared HIST
101 to PSYC 101, nor to MATH 101, but because of the transitive property, we can rely on the
fact that MATH 101 is better than ENGL 101, and ENGL 101 is better than HIST 101. Therefore
MATH 101 must be better than HIST 101.

Getting back to the example, now we have three classes still on the rule since we just removed
only HIST 101. That's still too many credits. So we do it again. This time around we determine
that:

MATH 101 is better than ENGL 101
PSYC 101 is better than ENGL 101

This means that ENGL 101 is the worst. We remove it from the rule.

That leaves us with MATH 101 and PSYC 101, and that's still too many credits. So we do it
again. This time, we determine (again, based on the "Remove excess classes" decision-process)
that:

PSYC 101 is a better fit than MATH 101.
PSYC 101 is better than MATH 101

 Degree Works | Technical Guide 5.0.3.1 75

So – MATH 101 is removed. Notice that this is the first time that MATH 101 was compared to
PSYC 101, but because of the work that was done prior to this we can with confidence conclude
that:

Based on the classes that originally fit on this rule, when comparing these classes – PSYC 101 is
the best fit.

Note that decisions later in the audit process could impact this rule. Perhaps PSYC 101 fits on a
different rule in this block or elsewhere in the audit. At that point (later in the audit process) a
decision would have to be made: should PSYC 101 stay here on this "One introduction-level
class" rule – or should it apply to a different fit? If it turns out that PYSC 101 should be placed on
some other rule, the redemption step of the audit process will come into play reapplying one of
those other 101 classes to this rule – but only if they themselves are not applying to some other
rule.

Evaluating Classes on a Rule
When too many credits/classes are applied to a rule, the auditor needs to figure out which
classes to remove from the rule. The auditor goes through the following steps to determine which
classes to keep and which to remove:

1. Kept class in the including list
Given a rule such as the following:
5 Classes in MATH @ Including MATH 201
the auditor will keep the "included" class since it is required.

2. Kept class with Apply Here exception
If a class has an Apply Here exception, it will be kept on a rule before all others.

3. Kept class needed by MinAreas
4. Kept class needed by MinPerDisc
5. Kept class needed by MinSpread
Given a rule such as the following:
2 Classes in MATH @, CHEM @, BIOL @, PHYS @ MinSpread 2

Assuming MATH 101, CHEM 101 and CHEM 102 are on this rule, the auditor will keep the MATH
101 class on the rule because it is needed to satisfy the MinSpread qualifier. The same approach
is used for MinAreas and MinPerDisc as well.

6. Kept class that matches rule exactly (1 Class and 3 Credits in)
Given a rule such as the following:
1 Class and 3 Credits in ACCT 2@

Assuming ACCT 201 for 1 credit, ACCT 202 for 2, credits and ACCT 203 for 3 credits are applied
here, the auditor will keep ACCT 203 because it matches the requirement of 1 class and 3 credits
exactly.

7. Kept completed class and discarded in-progress class
When the UCX-CFG020 DAP14 In-progress vs Completed flag is set to Y, a completed class is
given preference over an in-progress class at this step in the algorithm. This usually works

 Degree Works | Technical Guide 5.0.3.1 76

because in-progress classes that end up in fall-through can be reapplied to this rule by the
redemption algorithm, if the rule still needs additional classes/credits. If the configuration flag is
set to N, this step is skipped. Because setting this flag to Y alters the auditor’s best-fit algorithm it
is recommended that this flag be left as N so that this step is skipped. When this flag is set to Y
you are telling the auditor to make a different choice than it would normally make and thus it is
unable to apply classes in the most efficient manner.

8. Kept class that originally only fit this rule and no other
If a class can only fit this rule and no other rule, then it is kept over another class that has or had
multiple possible fits.

9. Kept class that currently fits this rule and no other
If a class did fit on multiple rules at some point, but now only fits this rule, it will be kept over a
class that is now still placed on multiple rules.

10. Kept class that is reapplied here from fall-through via Redemption
If a class was removed from all rules and placed in fall-through, but was then placed back onto
this rule through redemption, it will be kept.

11. Kept class based on Decide option - if specified
Given a rule such as the following:
2 Classes (Decide = BESTGRADE) in MATH @, CHEM @

The auditor will obey the DECIDE operator when deciding which class to keep if none of the
above steps has helped make a decision.

12. Kept class based on the fit rank (See the Fit Rank section in the Diagnostics Report)
When a class has multiple fits, its fits are ranked from 1-x where 1 is the best place to keep the
class and x being the least best place to keep the class. So when comparing two classes that fit
this rule, the fit rank of each on this rule is considered. If one of them has a fit rank of 2 on this
rule and the other has a fit rank of 3 on this rule, the class with a 2 is kept because for that class
this is the better place to be kept.

13. Kept class that is less likely to be removed because of a header qualifier
If we have a header qualifier such as the following:
MaxClasses 3 in ART 108, 109, 2@

And we have a rule such as the following:
1 Class in ART 108, 123, 145

The auditor sees that ART 108 is part of a MAX qualifier and so has a greater chance of being
removed from this rule. The other class (that is not part of any qualifier) is kept on this rule
instead.

14. Kept class with fewer exclusive fits on other rules
Given a rule such as the following:
1 Class in BUS 106, 108;

BUS 106 may fit on two other rules – both of which are not shared with this rule.

BUS 108 may fit on two other rules – but one of them is in a block shared with this block.

 Degree Works | Technical Guide 5.0.3.1 77

This means that BUS 106 has two other exclusive (not shared) fits while BUS 108 has only one
other exclusive (with the other one being shared) fit. Thus, BUS 108 will be kept on this rule
because there is a greater chance that BUS 108 will end up on this rule since it will either go here
or on that other exclusive fit – while there is only a 1-in-3 chance that BUS 106 will end up on this
rule.

15. Kept class with a higher match level
Given a rule such as the following:
1 Class in ANTHRO 266, 277 3@;

Given the choice between keeping ANTRHO 266 or ANTRHO 304 on this rule, the auditor will
keep ANTRHO 269 because it is specifically listed. However, if given the choice between
ANTHRO 266 and ANTHRO 277 both are specifically listed – but if one of them is in-progress its
match level is actually slightly lower – so in this case the completed class will be kept instead of
the in-progress class. In other words, in-progress classes always have a match level lower than
they would have if they were completed.

16. Kept class based on UCX-CFG020 TIEBREAK
If all other steps cannot help the auditor make a decision about which class to keep, it uses the
CFG020 TIEBREAK setting to figure out which class to keep. Usually this step decides which to
keep because one is in-progress and one is completed, or one has a higher grade, or one has a
higher course number, etc. You can control whether the in-progress vs completed comparison is
the first TIEBREAK check the auditor performs – but you need to alter the settings using
Controller to configure it according to your requirement.

17. Kept class based on coin flip
In very rare situations, for example, when a class is repeated many times (such as PE and ART
classes), the TIEBREAK checks do not help the auditor make a decision. At this point the two
classes in question are basically identical so the auditor makes a decision based on a randomly
generated choice.

In-progress vs Completed
The steps the auditor goes through to evaluate the classes on a rule detailed in the section
above. When each step is evaluated and if both classes have “equal values” for that particular
step, the auditor continues to the next step to see if it can find a reason to keep one class over
another class. The auditor looks at many properties for the classes in question, and based on a
UCX-CFG020 DAP14 configuration flag, it also checks to see if one of the classes is in-progress.

It is only at step #7, that the algorithm directly examines whether a class is in-progress when
deciding which rule to keep. Step #7 is used or ignored based on a UCX-CFG020 DAP14 flag.

Logging Degree Works Errors
Degree Works uses the UNIX syslog to log conditions that may be of interest to the administrator.
Degree Works can be configured so that only serious errors go to the log or so that all error
conditions go to the log. Logging within Degree Works can also be turned off as needed. The
system log file(s) can be interrogated on a regular basis by the administrator to track for problems
with the software.

 Degree Works | Technical Guide 5.0.3.1 78

PSK84 – SBISYSLOG
The PSK84 sbisyslog routine controls the logging of information to the system log.
PSK84 reads environment variables to control whether logging is on or off and what kind
of information is logged:

SBI_SYSLOG
Set to 0 to turn off logging. Set to 1 to turn on logging. If the variable is not found logging
will be on by default.

export SBI_SYSLOG=1

SBI_SYSLOG_FACILITY
The facility can be used to help differentiate those log entries that pertain to your test and
those that pertain to your production environment. The variable should be set to a value
from 16 – 23. Doing this will cause the token of “local0” – “local7” to appear in the log.
Some systems to not display this information however. If the variable is not found 16 or
“local0” will be used as the default. The local facilities must be configured in your
syslog.conf so that these type of errors are directed at your log file. Log entries tied to a
specific facility can be sent to one file while entries with a different log entry can be sent
to another file.

export SBI_SYSLOG_FACILITY=16

SBI_SYSLOG_PRIORITY_MAX
The priority-max environment variable can be used to restrict which types of entries
appear in the system log. Setting the max to 0 will direct the operating system to only log
entries with a 0 or EMERG priority and ignore all attempts to log any other type of
priorities. Setting the max to DEBUG or 7 will direct the operating system to log all entries
with priorities 0 – 7. Degree Works makes use of priorities 2, 3, 4, 5 and 6. User logon
errors, for example, are logged with a priority of 6 while more serious conditions such as
not being able to open the database are logged with a priority of 2.

export SBI_SYSLOG_PRIORITY_MAX=7

PSK84 uses the LOG_PID and LOG_CONS options when opening the system log. The
former tells the OS to log the PID with each message while the latter tells the OS to log
the message on the console if there is a problem writing the system log file.

For more information:
See sys/syslog.h
See man pages for syslog, syslogd, openlog, logger

syslog.conf
Your system’s syslog.conf file controls which priorities and facilities get logged to which log file.
Be sure your syslog.conf file is configured to support the facilities and priorities being used by
Degree Works. Below are extracts from different syslog.conf files. The syslog.conf file is usually
found under /etc.

Aix example:

mail.debug /usr/local/logs/mailog
*.emerg /usr/local/logs/syslog
*.alert /usr/local/logs/syslog
*.crit /usr/local/logs/syslog
*.err /usr/local/logs/syslog
auth.notice /usr/local/logs/syslog
local2.debug /var/log/sudo.log
daemon.info /usr/local/logs/infolog

Sun example:

*.err;kern.notice;auth.notice /dev/sysmsg
*.err;kern.debug;daemon.notice;mail.crit /var/adm/messages

 Degree Works | Technical Guide 5.0.3.1 79

*.alert;kern.err;daemon.err operator
*.alert root
*.emerg *

HP-UX example:

mail.debug /var/adm/syslog/mail.log
.alert;.critical;*.info;mail.none /var/adm/syslog/syslog.log
*.alert /dev/console
*.alert root
*.emerg *

You could setup your configuration file to send all local0 critical messages to one file and all
local1 critical messages to another file:

local0.crit /var/log/prodenv.log
local1.crit /var/log/testenv.log

The Degree Works sbisyslog routine attempts to log the program and subroutine where the
condition was encountered. Errors will be logged differently based on the kind of error that is
encountered and the program that encounters the error. There is no fixed format that all
messages follow. All Degree Works messages do contain “DW-“ followed by a four-byte program
name followed by the subroutine or program that encountered the error. The PID of the process
encountering the condition is logged. On Sun the actual facility and priority is placed in the
system log while other systems may not log this information.

Example log entry from HP-UX:

Jan 26 13:32:48 hpdev DW-DP16-DAP16[8749]:
ID/Type/Value=RA000002/DEGREE/BA Status= -1 Error= 0

Example log entry from Sun:

Nov 21 16:05:46 Figment DW-DP16-DAP16: [ID 702911 local0.notice]
ID/Type/Value=RA000002/DEGREE/BA Status= -1 Error= 0

You can use the system’s logger command to test where your system messages end up and be
sure the syslog daemon is running.

$ logger -p daemon.notice -t FIRSTTEST Now it Works
$ logger -p local0.crit -t MYTEST Test of a critical error

Viewing logs
You may want to write your own scripts to examine the contents of your system log files. Any
information that seems to contain errors can be sent to the Ellucian help desk and may assist in
troubleshooting a problem.

The dgwlogger command and dgwlogshow commands may also be useful tools to test out
adding log entries and viewing them:

bin/dgwlogger
bin/dgwlogshow

Cleanup
You may want to clean out your system logs regularly so that they contain only recent
information.

 Degree Works | Technical Guide 5.0.3.1 80

Multi-entity Processing
Some institutions need to deploy Degree Works across multiple degree-granting campus entities
within their institution. Other institutions serve constituents at only one campus and have no need
to share certain information beyond a single entity. Degree Works is configurable so that
institutions may elect to utilize only one instance of Degree Works at a single entity or campus, or
deploy Degree Works services across many campuses or entities while specifying particular
types of data that ought to be shared among those entities. Configuration to specific institutional
needs allows sites to manage both data and system administration in a manner best suited to
their particular needs.

Recognizing that terminology in Higher Education can be ambiguous, understand that in the
context of multi-entity processing, we are using "campus" to mean a separate, degree-granting
institution which is either "all by itself" (Entity=1) or part of a district or system of sister institutions
(Entity=many) which has a central administrative arm and installation of Degree Works. We
recognize that "campus" can also mean "location", where the campus is a satellite venue for the
larger degree-granting institution. In this discussion of multi-entity processing do not think of a
"campus" or "campus entity" as simply a locale or the case study will be confusing.

There are different reasons why an institution would opt for multi-entity processing among
multiple campuses. For multi-entity institutions, sharing data enables campuses to use
commonly accessed information, thereby reducing the disc space that database tables require.
Sharing Oracle databases among entities conserves memory needs on the system and reduces
the level of redundant system administration needed for managing the application. Degree Works
has the ability to support multiple campuses sharing a variety of academic and biographic data,
as well as the sharing of academic requirements among campuses. Degree Works may be
configured to share certain tables among some or all campuses, and also allows certain tables to
be configured uniquely for individual campus entities.

Institutions supporting only one campus or entity need not configure anything special for their
campus installation or updates; they may utilize default values delivered with the product.
Institutions supporting multiple campuses or entities have several options when activating multi-
entity processing. These options include:

1. Individual Oracle database schemas for each campus entity with unique data for each
campus (i.e. nothing shared)

2. Individual Oracle database schemas for each campus entity with some shared data used
by some or all campus entities, along with some unshared campus-specific data

3. A commonly shared Oracle database schemas with common access to all data by each
campus entity

This article focuses on scenario #2 in which an institution deploys individual databases with some
shared data and some unique data. The case study is intended to familiarize institutions with
some of the configuration issues to consider before adopting multi-entity processing for multiple
campuses.

Case Study as Example
In this case study, the Springfield Community College District is comprised of four campus
entities: North College, South College, East College and West College. Students may attend any
of the four campuses sequentially or simultaneously, with classes taken at any campus yielding
in-residence credit. The four campuses share a common course numbering system with similarly
named courses also having common course content. Not every class is offered at every campus
entity. It is assumed that a student will generate audits at those District institutions at which

 Degree Works | Technical Guide 5.0.3.1 81

he/she is a matriculated, degree-seeking student. In such cases, the student will have one or
more rad_goal_dtl ("Degree records") for each campus at which he/she has declared an intended
degree.

To reduce database maintenance while giving students and advisors optimum Degree Works
services, Springfield plans to configure Degree Works to share as much data as possible
between the four colleges or campus entities. Data to be shared includes the course catalog, all
student academic data, and UCX validation codes and literals. Each campus entity, however, will
maintain its own set of degree requirements and wants the Degree Works audit worksheets to
reflect each campus’s needs and preferences. To accommodate sharing, Springfield will want to
allow common access to most of the RAD database tables. To assure individual maintenance of
degree requirements and other audit needs, Springfield will want to use the DAP database tables
in the proper configuration for individual campus entities.

RAD tables
The student data imported from Springfield’s student system is housed in these tables:

rad_Primary_mst
rad_Student_mst
rad_Biog_mst
rad_Noncrse_dtl
rad_Test_dtl
rad_Report_dtl
rad_Attr_dtl
rad_Applicnt_dtl
rad_Previnst_dtl
rad_Class_dtl
rad_Custom_dtl

rad_Transfer_dtl
rad_Term_dtl
rad_Aid_dtl

Configuring Degree Works to share these tables guarantees that all campus entities use the
same set of classes, test scores, and other academic information for each student, regardless of
the campus or campuses at which they matriculate. Springfield does want to assure accurate
auditing of academic information against the program requirements for each campus entity, but
also wishes to conserve table maintenance and discspace. For that reason, it will share some
RAD table information among campuses, but it will not share all institutional data.

To achieve the desired outcome, the District will not share the Degree records. These tables are
struck through on the above list to demonstrate that it is not to be shared. The Degree record
tables contain a student’s degree, major, minor, catalog-year etc information and really need to
be linked to the degree-granting campus entity. In other words, this table should be unique to
each campus entity or college so that if a student only matriculates at North College, then the
other campus entities would not run audits or review data for that student. If the student is
matriculated at both the North and South campuses then each of those entities will have their
own degree record for that student, and an audit may be generated for that student at each of
those campuses.

Each campus will bridge data from the student system that includes any coursework from the
District campuses, but each campus will only evaluate data for matriculated students with
declared degrees at its campus. North College should be sending to Degree Works all of the
students who have matriculated at North regardless of where within the four colleges students
have actually taken coursework. A student matriculated at North College may have taken classes
at North, South, East and West, but only the student system extract for North should be pulling

 Degree Works | Technical Guide 5.0.3.1 82

this student’s Degree records data. North will also extract the coursework taken at all four
campuses. Extracts generated at South, East and West will not extract this student at all since
the student is not a matriculated degree-seeking student at those campuses and the student’s
Degree records are not shared.

Some students may be matriculated at more than one campus, in which case their student data
will be bridged to each matriculated campus and available for auditing. When extracts are run at
each campus where a student is matriculated, that student’s data will be extracted multiple times
but their shared data will only exist once in Degree Works, while their unique campus Degree
records will exist for each campus.

DAP tables
As stated above, DAP database tables will be configured to reflect the unique degree
requirements for each campus. For example, the humanities requirement at North College is
similar but somewhat different from the humanities requirement at East College. Springfield will
configure Degree Works so that the requirements tables are not shared among the campuses,
and so that each entity has its own table.

dap_Req_mst
dap_Req_text_dtl
dap_Req_link_dtl
dap_Req_crs_dtl

Likewise, degree audits need to be retained by each campus entity individually, and therefore
audit tables are not shared. Additionally, the exceptions and notes associated with those audits
are not shared.

dap_Student_mst
dap_Except_dtl
dap_Note_dtl
dap_Note_txt_dtl
dap_Audit_dtl
dap_Audtree_dtl

When using the Curriculum Planning Assistant tool the audits are extracted to the tables noted
below. These tables would also be unique to each campus entity and remain unshared.

dap_Result_dtl
dap_Resclass_dtl
dap_Resnoncr_dtl

Academic plans for students are linked to their academic requirements. That also dictates that
planner tables should not be shared and that each campus entity would maintain unique planner
data.

sep*

temp*

At the end of this section there is a list of Degree Works tables that can be configured for multi-
entity processing. Note that the list of UCX_* tables can be reviewed using Controller.

 Degree Works | Technical Guide 5.0.3.1 83

Transit tables
The Transit tables should never be shared and thus should never be placed into the share file.

How table sharing is accomplished
The sharing of tables among multiple campus entities (for example, North, South, East and West)
within an institution (Springfield CCC) is accomplished using Oracle synonyms. Degree Works
uses synonyms to point to the real table owned by another schema.

For example, schemaNorth’s rad_Class_dtl table may really be just a synonym that points to the
rad_Class_dtl table owned by schemaAll. When synonyms are created like this for all campuses
they end up sharing the data stored in that table:

CREATE SYNONYM SCHEMANORTH.RAD_CLASS_DTL FOR SCHEMAALL.RAD_CLASS_DTL;
CREATE SYNONYM SCHEMASOUTH.RAD_CLASS_DTL FOR SCHEMAALL.RAD_CLASS_DTL;
CREATE SYNONYM SCHEMAEAST.RAD_CLASS_DTL FOR SCHEMAALL.RAD_CLASS_DTL;
CREATE SYNONYM SCHEMAWEST.RAD_CLASS_DTL FOR SCHEMAALL.RAD_CLASS_DTL;

The real table and associated indexes and triggers are created under the schemaAll user.

Degree Works delivers a dwschema.xml document defining all of the tables created for use with
the application. The sharing rules of tables are defined in a share.xml document. The default
share.xml document used for an institution containing a single college where no sharing is
needed looks like this:

<?xml version="1.0" encoding="utf-8"?>
<EntityDatabaseConfig Version="1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="dwshare.xsd">
 <ClientName>DegreeWorks</ClientName>
 <DefaultSharing>Unique</DefaultSharing>
 <Entities>
 <Entity Id="DegreeWorks">
 <Name>DegreeWorks</Name>
 <Schema>dwschema</Schema>
 <SchemaOutputFile>dwschema.sql</SchemaOutputFile>
 </Entity>
 </Entities>
</EntityDatabaseConfig>

For an institution like Springfield where multiple campus Entities must be defined, the document
looks like this:

<Entities>
 <Entity Id="NorthCollege">
 <Name>North College</Name>
 <Schema>schemaNorth</Schema>
 <SchemaOutputFile>schemanorth.sql</SchemaOutputFile>
 </Entity>
 <Entity Id="SouthCollege">
 <Name>South College</Name>
 <Schema>schemaSouth</Schema>
 <SchemaOutputFile>schemasouth.sql</SchemaOutputFile>
 </Entity>

 Degree Works | Technical Guide 5.0.3.1 84

 <Entity Id="WestCollege">
 <Name>West College</Name>
 <Schema>schemaWest</Schema>
 <SchemaOutputFile>schemawest.sql</SchemaOutputFile>
 </Entity>
 <Entity Id="EastCollege">
 <Name>East College</Name>
 <Schema>schemaEast</Schema>
 <SchemaOutputFile>schemaeast.sql</SchemaOutputFile>
 </Entity>
 </Entities>

Multiple ShareGroups may be defined so that subsets of campuses may share certain
information while another subset “shares” only their own data. For Springfield a ShareGroup is
defined allowing all four colleges specified to share the tables listed within:

<ShareGroup Id="sgAll" Schema="schemaAll" SchemaOutputFile="schemaall.sql">
 <EntityId>NorthCollege</EntityId>
 <EntityId>SouthCollege</EntityId>
 <EntityId>EastCollege</EntityId>
 <EntityId>WestCollege</EntityId>
 <DatabaseTable>RAD_ETS_MST</DatabaseTable>
 <DatabaseTable>RAD_COURSE_MST</DatabaseTable>
 <DatabaseTable>RAD_NEXT_ID_MST</DatabaseTable>
 <DatabaseTable>RAD_PRIMARY_MST</DatabaseTable>

 … etc etc

</ShareGroup>

For a more complete example, review the app/schema/mepshareexample.xml document. That
document articulates examples where North and South share some tables, East and West share
some tables, all campus entities share some tables, and each campus has some unique,
unshared tables. This sample document shows that the parent tables must come before the child
tables; do not change the order of the tables in this document once they have been setup by the
Ellucian Services team.

Creating the database tables
Please see the dbbuild script outlined in the Special Scripts section of the Technical Guide.
Please be sure to consult with Ellucian staff to configure your share.xml and before running
dbbuild.

Integrated Interface for Banner (Banner Student System sites only)
See the Banner Database Issues section of the Banner Considerations Technical Guide for Multi-
Entity Processing configuration instructions.

Web access
Only students who have a degree record for a particular college can be accessed and processed
within the Degree Works web interface.

 Degree Works | Technical Guide 5.0.3.1 85

List of tables used in Degree Works
This is a list of Degree Works tables that may be configured by institutions wishing to utilize multi-
entity processing at multiple campuses. Note that the list of UCX_* tables can be reviewed using
Controller. Sites considering use of multi-entity capabilities may wish to schedule a technical
consulting call with Ellucian to review their plans and particular needs prior to activating these
features.

Table name Description

dap_applicnt_mst Transfer Equivalency student applicant record

dap_audit_dtl Stores a degree audit

dap_audtree_dtl Stores the body of the degree audit – like a BLOB

dap_college_dtl Transfer Equivalency transfer school record

dap_eqv_crs_mst Stores a college equivalence records

dap_except_dtl Stores audit exceptions/waivers

dap_map_cond_dtl Transfer Equivalency articulation data

dap_mapping_dtl Transfer Equivalency articulation data

dap_next_id_mst Sequence numbers for scribe blocks, audits, etc

dap_note_dtl Stores notes for a student – when created, by whom, etc

dap_note_txt_dtl Stores the actual note text

dap_plancrs_dtl Stores a planned class and term value

dap_planner_dtl Stores planner information for a student

dap_plannote_dtl Stores planner note information

dap_pt_crs_dtl Stores planner template information

dap_pt_note_dtl Stores planner template information

dap_req_crs_dtl Stores list of courses referenced in a scribe block

dap_req_link_dtl Stores links from one scribe block to another

dap_req_mst Stores primary and secondary tags for each scribe block

dap_req_text_dtl Stores the actual notepad-like text for each scribe block

dap_resclass_dtl Stores audit CPA data

dap_resnoncr_dtl Stores audit CPA data

dap_result_dtl Stores audit CPA data

dap_student_mst Stores date/time of last audit and locking information

dap_template_mst Stores planner template information

dap_title_dtl Transfer Equivalency articulation data

dap_transfer_dtl Transfer Equivalency articulation data

dap_undecide_dtl Transfer Equivalency articulation data

rad_aid_dtl added in DW 4.0.0

 Degree Works | Technical Guide 5.0.3.1 86

rad_applicnt_dtl Transfer Equivalency application data

rad_attr_dtl Stores attributes about each class the student has taken – transfer_dtl and
class_dtl

rad_class_dtl Stores in-residence classes taken – historic and in-progress

rad_course_mst Stores courses offered by the institution: title, credits, etc

rad_crs_attr_dtl Stores attributes about each class offered by the institution – associated with the
course-mst

rad_custom_dtl Stores other information about the student need by scribe requirements

rad_degree_dtl Stores degree, major, minor, etc info (deprecated)

rad_ets_mst Transfer Equivalency list of transfer schools

rad_goal_dtl Stores school, degree, student level, catalog year information

rad_goaldata_dtl Stores fields of study, such as major, minor, concentration, as well as advisor
information

rad_log_dtl Log of bridge activity

rad_next_id_mst Next-id information for courses, students and ETS

rad_noncrse_dtl Stores student non-course data

rad_previnst_dtl Stores student’s previous degree information

rad_primary_mst Stores student name

rad_report_dtl Stores other student data that needs to appear on the worksheet

rad_student_mst Stores the student’s active term

rad_swap_id_dtl Stores a record of when a student ID was changed from one value to another via
the bridge

rad_term_dtl Stores student cum GPA/credits

rad_test_dtl Stores student test score information

rad_transfer_dtl Stores transfer class information

rad_hash_mst Stores a record of what was loaded for this student; works with all rad_*_hsh
tables

rad_aid_hsh Stores hash value for the aid_dtl data

rad_applicnt_hsh Stores hash value for the applicnt_dtl data

rad_attr_hsh Stores hash value for the attr_dtl data

rad_class_hsh Stores hash for the class_dtl data

rad_custom_hsh Stores hash for the custom_dtl data

rad_degree_hsh Stores hash for the degree_dtl data (deprecated)

rad_goal_hsh Stores hash for the rad_goal_dtl

rad_goaldata_hsh Stores hash for the rad_goaldata_dtl

rad_noncrse_hsh Stores hash for the noncrse_dtl data

rad_previnst_hsh Stores hash for the previnst_dtl data

 Degree Works | Technical Guide 5.0.3.1 87

rad_report_hsh Stores hash for the report_dtl data

rad_student_hsh Stores hash value for the primary (name), biog (birthdate and SSN) and student
(active-term) data

rad_term_hsh Stores hash for the term_dtl data

rad_test_hsh Stores hash for the test_dtl data

rad_transfer_hsh Stores hash for the transfer_dtl data

shp_group_mst Loaded from UCX_SHP077; specifies default keys/access for each user-class

shp_log_dtl Stores web activity information

shp_passport_mst Stores the Degree Works session ID identifying the user’s access level (key ring)

shp_service_mst Stores key-ring for tabs, functions, etc – though normally key and service names
match

shp_user_mst Stores user’s ID and password and primary user class

For a list of the UCX tables and their descriptions, see the Degree Works Configuration Technical
Guide.

 Degree Works | Technical Guide 5.0.3.1 88

Percent Complete Calculation
A percent complete calculation is done for each rule, each block and for the overall audit. It is this
calculation which is used to mark a rule, a block or the overall audit as "completed".

Rule Completeness

Course Rule
At the course rule level, the calculation can take on some complex characteristics. Basically, the
calculation determines the number of classes or credits that are required for the rule and then
calculates the number of classes or credits applied to the rule. The percent complete is calculated
from those two factors. If a course is applied to a rule but has not yet been graded (i.e. it is "in
progress") and the rule would be completed with that course, the percent complete is reduced to
98%. In the Degree Works reports we show these in-progress rules with a single squiggle
signifying that the rule is close to being completed. If the student ends up failing the class it will be
placed in Insufficient and the rule will end up with an empty box. There is no guarantee that the
in-progress class will actually end up on the rule once it has been completed since other classes
the student registers for may cause classes to be shifted around.

A rule qualifier that is not met will make the rule become 99% complete – given the required
credits/classes were taken. A MinSpread or MinPerDisc qualifier that has not been met will cause
the rule to be marked as 99% complete and will appear with a box with a double-squiggle on the
Degree Works worksheet.

Noncourse Rule
The percent complete is calculated based on the total number of noncourses required and the
number of noncourses completed.

Subset Rule
All the rules within the subset form the basis of the percent complete calculation. If any subset
qualifiers are not satisfied (and all the rules are complete) the percent complete is reduced to
99%. If all rules are complete but one or more contains an in-progress the subset will be
considered 98% also – the subset will inherit this property of its child.

Group Rule
The group(s) that is the "most complete" is used as the basis of the percent complete calculation.
For example, a group rule states that 1 group is needed from a list of four groups.

1 GROUP in
 (8 CREDITS IN BIOL 100:199) or
 (8 CREDITS IN CHEM 100:199) or
 (8 CREDITS IN PHYS 100:199) or
 (9 CREDITS IN MATH 250 + CHEM 200 + CHEM 220)

If 6 credits have been applied to the last group and 4 credits to the first group, the last group will
be used to do the percent complete calculation.

 Degree Works | Technical Guide 5.0.3.1 89

If the first two rules have 4 credits applied the auditor will simply chose one given everything else
equal between the classes in question. The class on the rule not chosen is freed up to be used on
another rule or will be placed in fall-through.

Block and Blocktype Rule
The percent complete is based on the details of the rule in the referenced block. If the referenced
block is not found in the audit, the percent complete is zero.

If/Then/Else Rule
When the IF condition is FALSE and there is no ELSE rule, the IF statement is not included in the
block percent complete.

When the IF condition is true, the calculation is based on the rule type in the THEN portion of the
IF rule.

Block Completeness
Each block's percent complete is based on the rules and the block qualifiers. The rules are
counted at the highest level for this calculation. If a Subset Rule is included in the block, it is
counted as a single rule (it's completeness has already been calculated at the rule level). If all
rules within a block are complete but there are block qualifiers that are not satisfied, the
completeness is reduced to 99%.

If the block is optional then it is 100% complete. If it is not optional then add up the number of
rules at the first level and their total percent complete. Divide the total percent complete by the
number of rules counted to get the block's completeness. If all rules have been completed but
there is a block header qualifier that is not satisfied, the percent complete is reduced to 99%.

Overall Audit Completeness
The overall audit percent complete is calculated from the rules within each block being used by
the Auditor. (If a rule has not been used, e.g. within an IF statement, it is not included in the
calculation.)

For each block that does not have an OPTIONAL qualifier do the following: Add up the number of
rules at the first level - this means do not count each rule in a subset or group. Add up the
percent complete of each of the rules counted. Divide the total percent complete by the number
of rules counted to get the overall completeness. If all rules have been completed but there is a
block header qualifier that is not satisfied, the percent complete is reduced to 99%.

Output Options
Instead of showing the percent complete for each block, Degree Works maps each percent value
to a graphic.

Percent complete Meaning Visual display
0 - 97 Not complete Empty box
98 In-progress incomplete Single squiggle box
99 Qualifier incomplete Double squiggle box
100 Complete Checked box

 Degree Works | Technical Guide 5.0.3.1 90

Repeated Classes
The Auditor needs to know what rules to follow when applying Repeated Classes to the audit.
Repeated classes are identified using the Repeat-Ptr and Repeat-Plcy fields on the rad-class-dtl.
If the Repeat-Ptr field is non-blank it is assumed to be a repeat. The Repeat-Ptr field contains the
discipline and number of the course it is repeating – regardless of which occurrence it is. The
Repeat-Plcy tells Degree Works how to handle the repeat set with regard to credit and GPA
calculations. Your school’s forgiveness policy is important in determining which repeat policy to
use here.

Repeated Courses whose course numbers have changed
If a student originally took a course as MATH 150 and retakes it as MATH 153 or STAT 153, the
Auditor needs to know that these two classes are associated. The Repeat-Ptr field on the rad-
class-dtl can record this.

Degree Works Repeat Policies

Policy 1 The credits and grade points of the last (most recent) occurrence are counted by Degree

Works. Earlier occurrences are forced to the "insufficient" section of the audit. Those in
insufficient do not count in GPA calculations.

Most recent counts – others do not.

Policy 2 The credits and grade points of the class with the best grade are counted by Degree Works.
The other occurrences go to "insufficient". Those in insufficient do not count in GPA
calculations. Best grade counts – others do not.

However, when two classes have the same grade, Degree Works needs to know which class
to keep and which should be placed in insufficient. The Additional Control Flag in UCX-
AUD047 is used for this situation. You can set it to O to keep the Oldest class and N to keep
the Newest class when two classes have the same grade.

Policy 3 All occurrences are counted by Degree Works. The audit should apply courses wherever
they fit or in the "fallthrough" or "insufficient" section of the audit. All occurrences count
and are treated separately.

Policy 4 All sets of grades and grade points count for GPA calculation. The credits from the last (most
recent) occurrence are counted by Degree Works. The last occurrence is applied by Degree
Works and all other occurrences go to "insufficient". Most recent apply to rules – others
count in GPA calculation.

Policy 5 All occurrences of the class should be listed on the Degree Works audit where they could
apply (i.e. all the occurrences stay grouped together by Degree Works). All sets of grades
and grade points are used in the GPA calculation, but only credits for the occurrence with the
best grade are counted by Degree Works. The best grade is used by Degree Works when
checking MINGRADE.

All appear together on a rule and all count in the GPA calculation.

Policy 6 All occurrences with Repeat Policy 6 are applied by the Auditor wherever they fit or in the
"fallthrough" section of the audit. Other occurrences of this course that are not tagged with
policy 6 (should be tagged with 0) are forced to "insufficient". Those in insufficient do not
count in GPA calculations.

All with policy 6 apply to rules – all with policy 0 do not count in GPA calculations.

Policy 7 If the class is not found in this table the repeat limit is assumed to be 1. The class with the
best grade is kept. If multiple classes have the same grade then the most recently taken
class is kept – but a completed class is kept over an in-progress class. If a class is found in
this table for the term range specified then the repeat limit is obeyed. Classes that are not
kept are marked with an “insufficient reason” of “WG” (Worst Grade). These WG classes are

 Degree Works | Technical Guide 5.0.3.1 91

moved from the insufficient section to the over-the-limit (Not Counted) section by the auditor
but only after the auditor has calculated overall the major GPAs based on what was in the
insufficient section. The fact that these insufficient classes appear in the over-the-limit
section of the audit is a display issue only that is part of this policy.

Policy B Banner only.

If the SHRTCKN_REPEAT_COURSE_IND is equal to an “E” and the Excluded class is NOT
skipped the following rule shall apply: the rad_credits_earn, rad_gpa_credits and
rad_grade_points will be set to “000000”, the insuff-flag will be set to Y and the repeat-ptr
and repeat-plcy will be blanked out. This allows these special classes to be displayed in the
insufficient section of the report, but with no impact to the credits earned or GPA.

If the SHRTCKN_REPEAT_COURSE_IND is equal to "A" and the Averaged class is NOT
skipped the following rule shall apply: the insuff-flag will be set to Y and the repeat-ptr and
repeat-plcy will be blanked out. This allows these repeated classes to be displayed in the
insufficient section of the report, but they will still impact the GPA.

If the SHRTCKN_REPEAT_COURSE_IND is equal to "I" the class will apply to rules as a
normal class. The repeat-ptr and repeat-plcy will be blanked out for these classes.

 Degree Works | Technical Guide 5.0.3.1 92

SOC Report Format
Degree Works has the ability to generate SOC (Servicemembers Opportunity College) DNS
Student Agreements. The Degree Works SOC report is an audit worksheet displaying the results
in a format accepted by the SOC office.

For more information about this agreement, refer to the official SOC Degree Network System
Handbook provided by the Servicemembers Opportunity College office.

Degree Works Dashboard
The Worksheets tab on the Degree Works dashboard has two SOC menu items: SOC and SOC
History. Access to these menu items as well as functions under these items is controlled by SHP
security keys.

The SOC menu allows a user to display the SOC Report format, and a diagnostics report. New
audits can be generated, and saved. This menu only allows the most recent audit to be
displayed.

 Degree Works | Technical Guide 5.0.3.1 93

The SOC History menu allows the user to view previous versions of the SOC report, the same as
the “history menu” option of the other audit types.

Sources of Data
To display and print a DNS Student Agreement (Degree Works SOC report) that is usable for the
institution and also acceptable to submit to the SOC office, a review of the current Degree Works
environment may be needed. Specifically:

1) Location and extraction of SIS data needs to occur so that header information can be
completed

2) Attributes need to be assigned to courses so that credits are assigned to the appropriate
location in the tabular section of the report

3) Scribed requirements may need additional modification so that the audit section display is
appropriate

4) Total credits required for the degree needs to be defined

Report Header Data
In order to fully utilize SOC reports, this informational data must be stored in Degree Works. This
is data that is strictly for display-purposes only. In Degree Works, the standard location to store
this type of data is the rad_report_dtl. For SOC reports, these are the rad_report_dtl records that
are used:

 Degree Works | Technical Guide 5.0.3.1 94

Report-dtl code Description
SOCAGREEMENT SOCAD, SOCNAV, SOCMAR, SOCCOAST
SOCDEGTYPE Type of degree (associates, bachelors, also army career)
SOCDNSNETWRK Appropriate Degree Network System network
SOCDEGRTITLE Degree Title, as listed in catalog
SOCSSN Social Security Number, last 4 digits only
SOCBRANCH Branch of Service (Navy, Army, etc.)
SOCMILRANK Pay Grade (Military Rank)
SOCMOS Military Occupational Specialties
SOCMILINSTAL Military Installation where servicemember is assigned
SOCDATE Date of signatory approval
SOCOFFNAME Name of college official
SOCOFFTITLE Title of college official

If you are currently storing this data in your SIS, you will need to setup the extraction process to
pull the data into Degree Works:

If you are a Banner site you will setup UCX-BAN080 records
If you are a Colleague site you will setup report.client.properties

If you are not currently storing this data in your SIS and want it to appear on the Degree Works
worksheet, you will need to start doing so to allow the extraction of these elements.

Each of these report header items is further explained in the screenshot illustrations sections that
follow.

Credit Hour Awarded Data
An important aspect of the SOC report is the “SOC Type”, also known as the credit source. This
information is used to identify the category in which credits are counted in the “Credit Hours
Awarded” section. This is the military training, college-level examinations, and other non-
traditional credit sources that apply toward degree requirements. It is stored on the rad_attr_dtl
record tied to the rad_transfer_dtl. Banner schools need to record an attribute for each transfer
class for the appropriate SOC type. Here are the known SOC Types and the attribute values you
need to add to SHRTATT:

Attribute Description
SVSC “Service School,” also known as Military Training Courses
MOS “Military Occupational Specialties”
CLEP “College-Level Examination Program,” also known as General and Subject Exams
DSST “DANTES Standardized Subject Tests”
ECE “Excelsior College Examinations”
CRTX Certification Examination Credit, such as FAA certification
SOCO Other earned credits, such as internships, portfolio assignments, other non-military

experience

Scribe changes needed – “SOC” RuleTags
Effort has been made to make scribing changes minimal to produce the SOC report format.
Scribe changes have been limited to the addition of RuleTags to help organize the output
appropriately, and are needed only if it is determined that the output needs modification. There
are 4 new RuleTags that have been added to assist with this.

 Degree Works | Technical Guide 5.0.3.1 95

SOC_CATALOG - SOC Course Catalog Number
Each Degree Works requirement may contain a course that has a SOC-standard course
associated with it. For example, MATH 101 at your institution maps to the SOC-standard
MH001B. In order to populate the “SOC Course Cat #” column in the SOC report, you must
update your Scribe blocks with the information. This is done using the “RuleTag” syntax using
“SOC_CATALOG” as the RuleTag description. For example:

3 Credits in MATH 101
 RuleTag SOC_CATALOG=MH001B
 Label “College Algebra”;

SOC_LABEL - SOC Course Title
The label on each requirement is used for the Course Title column. However, you may specify
alternative text to be used in the SOC report by using the SOC_LABEL rule tag. In most every
case you will surely find that the label you have in place is perfectly fine to use on the SOC report
but you always have the option of changing it without affecting the academic audits.

3 Credits in EVA 101
 RuleTag SOC_LABEL="Environmental Foundations"
 Label "This label will not appear on the SOC report";

SOC_ADVICE - SOC advice
If ProxyAdvice is found on the rule then it will be placed underneath the label in the Course Title
field. When ProxyAdvice is found the Course Number field is left empty regardless of what
courses are listed on the requirement.

5 Credits in ART 2@
 ProxyAdvice "You need to take 5 credits in art. "
 ProxyAdvice "You have taken <APPLIED> so far."
 Label "Art requirement";

But you can override the ProxyAdvice by using SOC_ADVICE. Actually, even if the rule does not
have ProxyAdvice you may still add SOC_ADVICE to be displayed below the label in the Course
Title field. If the SOC_ADVICE is found it will be used and any ProxyAdvice will be ignored. As
with ProxyAdvice, when SOC_ADVICE is found the Course Number field is left empty regardless
of what courses are listed on the requirement.

18 Credits in MATH 200:299 (With Attribute=ABCD)
 RuleTag SOC_CREDITS=8
 RuleTag SOC_ADVICE="8 credits of math at the 200-level. "
 RuleTag SOC_ADVICE="Each class must have an attribute of ABCD.“
 ProxyAdvice “You still need <NEEDED> credits”
 Label “Additional math";

 Degree Works | Technical Guide 5.0.3.1 96

SOC_CREDITS - SOC Requirement Credits
The Hours Required field is a critical piece of information for the SOC report. However, it may not
always be obvious how many credits each requirement is worth. In these cases you may need to
add the SOC_CREDITS rule tag to your requirements.

The example that follows details how the report determines the Hours Required value and when
you need to use SOC_CREDITS.

Example 1
The credits on the rule are specified so they are placed in the Required Hours column.

3 Credits in ACCT 102
 Label "Accounting II";

Example 2
The credits were not specified but since it is a single course listed we take the credits from the
course (looked up on the rad_course_mst). Here EVA 101 is a 4 credit course.

1 Class in EVA 101
 Label "Environmental Foundations ";

Example 3

Here again the credits were not specified. However, since the rule requires two classes and
because two classes were listed we simply add up the credits for both courses – again taken from
the rad_course_mst.

2 Classes in MATH 123 + 124
 Label "Calculus I and II";

Example 4

This same determination of credits is made as with the previous example. Here it is a comma-list
instead of a plus-list of courses but since three classes are required and since we have three
classes listed we can still add up the credits for each.

3 Classes in MATH 223, 224, 225
 Label "Discrete Math 1, 2, and 3";

Example 5

Here the credits were not specified and we have a range of courses listed. We cannot determine
the credits needed by examining the list of courses and thus you must use SOC_CREDITS to

 Degree Works | Technical Guide 5.0.3.1 97

indicate the number of credits required. This would also be the case if this rule was scribed using
a wildcard.

2 Classes in ENGL 200:299
 RuleTag SOC_CREDITS=6
 Label "200-level English";

Here are other cases where the SOC_CREDITS is needed:

3 Classes in MATH 104, 109, 118, CHEM 2@, 314, 418, BIOL 198, 203

1 Class in ART 3@

Example 6

On very simple group rules the number of credits for each requirement is the same – as shown
below. However, on many group rules the number of credits on each option is different and thus it
is not so easy to determine how many credits actually are required by the group. For this reason
you must add SOC_CREDITS to each group rule. The credits for each of the rules within the
group are shown in the report in parentheses as an FYI of sorts.

1 Group in
 (6 Credits in SPAN @ Label "Spanish") or
 (6 Credits in FREN @ Label "French") or
 (6 Credits in ITAL @ Label "Italian")
 RuleTag SOC_CREDITS=6
 Label "Language option";

Example 7

The credits for the entire subset are actually not required but if you so choose you may add
SOC_CREDITS to each of your subsets. This number will be shown as an FYI with the number
displayed in parentheses. To limit the number of number that appear on the report it might be
best for you not to add SOC_CREDITS to subsets. You should at least test the report with it on
your subsets to see what you think and then add them only if you think it is helpful.

beginsub
 3 Credits in COMM 201
 Label "Basic Speech";
 3 Credits in COMM 202
 Label "Intro to Debate";
endsub
 RuleTag SOC_CREDITS=6
 Label "Communication";

 Degree Works | Technical Guide 5.0.3.1 98

Total Credits Required
The total credits required in a SOC report is identical to the total credits required in a normal
Degree Works report. It uses the starting block’s “Credits Required”, Scribed as a header
qualifier. If the starting block does not contain a “Credits” qualifier it will result in an inaccurate
SOC report.

You can scribe using Pseudo if needed. This will give the report the information that is needed
but will not need to be met for the student to satisfy the degree requirements. For example:

90 Credits Pseudo

Screenshot Illustrations – SOC DNS Student Agreement
This section will show by example how a Degree Works SOC report is constructed and where the
source of the data or configuration that influences the output is maintained. For this purpose, the
report is separated organizationally into the header, body, and footer.

Header
Here is an example of a complete SOC report header (Form edition December 2010)

 Degree Works | Technical Guide 5.0.3.1 99

SOC Degree Network System Program – SOCAGREEMENT
Only one of the boxes will be marked with an “X”. This is driven by the text contained in the value
of the rad_report_dtl SOCAGREEMENT record.

For example, if the SOCAGREEMENT contains SOCAD-2, SOCAD, or SOCAD4 (anything with
“SOCAD”) then an X is placed next to SOCAD.

SOCAGREEEMENT is optional. If it is bridged it will be used as the doc states.

If no SOCAGREEMENT record is found, then SOCBRANCH will be used to determine the
agreement:

If “Army” is in the branch then an X is placed next to SOCAD.
If “Coast” is in the branch then an X is placed next to SOCCOAST.
If “Navy” is in the branch then an X is placed next to SOCNAV.
If “Marine” is in the branch then an X is placed next to SOCMAR.

Degree Type - SOCDEGTYPE
Only one of the boxes will be marked with an “X”. This is driven by the text contained in the value
of the rad_report_dtl SOCDEGTYPE record.

If SOCAGREEMENT contains:
SOCAD

SOCNAV
SOCMAR

SOCCOAST

If SOCDEGTYPE contains: SOCASSOC
SOCBACH

SOCALSOARMY

 Degree Works | Technical Guide 5.0.3.1 100

Privacy Statement

This text can be changed by altering the LabelPrivacyStatement variable in DGW_SOC.xsl – but
you should contact your SOC office before making changes to this text as it currently represents
the approved format.

Form Text

This text can be changed by altering the LabelCopies and LabelAgreement variables in
DGW_SOC.xsl – but you should contact your SOC office before making changes to this text as it
currently represents the approved format.

Home College Information

College displays your school’s name (SRNDWAUDITTITLE variable)
DNS Network displays the SOCDNSNETWRK value from the rad_report_dtl
Degree Title displays the SOCDEGRTITLE value from the rad_report_dtl

Pertinent Demographic Information

Student Name displays the student’s name
Social Security # displays the SOCSSN value from the rad_report_dtl – whatever is bridged.
Please be sure to bridge only the last four characters
Branch of Service displays the SOCBRANCH value from the rad_report_dtl
Pay Grade displays the SOCMILRANK value from the rad_report_dtl
MOS/Rating displays the SOCMOS value from the rad_report_dtl

 Degree Works | Technical Guide 5.0.3.1 101

Military Installation displays the SOCMILINSTAL value from the rad_report_dtl

Approving Authority Information
Date displays the SOCDATE value from the rad_report_dtl. If this item is not bridged, then the
date the audit was generated will be displayed.
Name of College Official displays the SOCOFFNAME value from the rad_report_dtl
Title displays the SOCOFFTITLE value from the rad_report_dtl
Other Degree Requirements displays the text in LabelOtherDegreeRequirements in the
stylesheet. This is changed by each school as needed during implementation.

The two Signature fields are left blank.

Miscellaneous

This is controlled by the LabelCalendar variable in the DGW_SOC.xsl stylesheet. This is
changed by each school as needed during implementation.

Body

Degree Requirements
Here are some examples showing how the Course Number, Course Title and Reqrd Hours for
Degree fields are populated based on what is scribed.

 Degree Works | Technical Guide 5.0.3.1 102

Accounting II

Only one course is listed and it appears in the Course Number column. The rule’s label is placed
in the Course Title column.

The rule is scribed with credits and its value is placed in the Reqrd Hours column.

3 Credits in ACCT 102
 Label "Accounting II";

Environmental Foundations

Only one course is listed and it appears in the Course Number column. The SOC_LABEL is
placed in the Course Title column.

The rule is scribed as 1 Class so the course’s credits are placed in the Reqrd Hours column.

1 Class in EVA 102
 RuleTag SOC_LABEL="Environmental Foundations"
 Label "This should not appear - see SOC_LABEL";

200-level English

A course range is listed and it appears in the Course Number column. The rule’s label is placed in
the Course Title column.

The rule is scribed as 2 Classes and 2 classes were not listed so SOC_CREDITS is needed and
its value is placed in the Reqrd Hours column.

2 Classes in ENGL 200:299
 RuleTag SOC_CREDITS=6
 Label "200-level English";

Environmental Research

Only one course is listed and it appears in the Course Number column. The SOC_LABEL is
placed in the Course Title column.

The rule is scribed with a credit range and its low value is placed in the Reqrd Hours column.
In addition, the student took ELENA 101 and this class applied to the rule so it appears in black
beneath the requirement.

3:5 Credits in ELENA 101
 RuleTag SOC_CATALOG="RD987B"
 RuleTag SOC_LABEL="Environmental Research"
 Label "This should not appear - see SOC_LABEL";

Calculus I and II

Two courses are listed and both appear in the Course Number column. The rule’s label is placed
in the Course Title column.

The rule is scribed with 2 Classes and 2 classes are listed so the total credits for both courses are
placed in the Reqrd Hours column.

2 Classes in MATH 123 + 124

 Degree Works | Technical Guide 5.0.3.1 103

 Label "Calculus I and II";

Discrete Math 1, 2, and 3

Three courses are listed and all appear in the Course Number column. The rule’s label is placed
in the Course Title column.

The rule is scribed with 3 Classes and 3 classes are listed so the total credits for all courses are
placed in the Reqrd Hours column.

3 Classes in MATH 223, 224, 225
 Label "Discrete Math 1, 2, and 3";

Additional Math

SOC_ADVICE was found so no courses are listed in the Course Number column. The rule’s label
is placed in the Course Title column.

The rule’s is scribed with 18 Credits but the SOC_CREDITS are placed in the Reqrd Hours
column.

18 Credits in MATH 200:299 (With Attribute=ABCD)
 RuleTag SOC_CREDITS=8
 RuleTag SOC_ADVICE="8 credits of math at the 200-level. "
 RuleTag SOC_ADVICE="Each class must have an attribute of ABCD."
 ProxyAdvice "You still need <NEEDED> credits"
 Label "Additional math";

Art Requirement

ProxyAdvice was found so no courses are listed in the Course Number column. The rule’s label is
placed in the Course Title column.

The rule’s 7 credits are placed in the Reqrd Hours column. Additionally, the student took EVA 101
and LARC 245 and both apply to this rule and appear beneath the requirement.

7 Credits in ART 2@, EVA 101, LARC 245
 ProxyAdvice "You need to take 5 credits in art. "
 ProxyAdvice "You have taken <APPLIED> so far."
 Label "Art requirement";

Math and Science Elective

More than 5 courses (not hidden) were found so no courses are listed in the Course Number
column. This maximum limit is controlled by the vMaxCoursesToShow variable in the stylesheet.
The rule’s label is placed in the Course Title column.

The rule’s 7 credits are placed in the Reqrd Hours column. Additionally, the student took RORY
101 and it applies to this rule and appears beneath the requirement.

7 Credits in MATH 101, 102, 103, 104, 105, 106, 107, RORY 101
 RuleTag SOC_CATALOG=AB123X
 Label "Math and Science elective";

 Degree Works | Technical Guide 5.0.3.1 104

24 Hours needed

The header advice appear at the top of the block if the vShowHeaderAdvice setting in the
stylesheet is set to Y.

This is line 1 of the header remark. This is line 2 of the header remark.

The header remarks appear beneath the header advice the top of the block if the
vShowHeaderRemarks setting in the stylesheet is set to Y.

Language Option

This is a group rule so the group’s label appears with a grey background and “Choose from 1 of
the following” is placed beneath the label.

It is important to know how many credits the group is worth so the SOC_CREDITS rule tag
should be placed on the rule. In this example each rule is worth the same amount of credits but in
many groups that is not the case.

Each of the rules in the group is processed normally with the following exceptions:

• A hyphen is placed before each title to show it belongs to the group.
• The credits for each rule are placed within parentheses as an FYI; the credits on the group is

what is used in the report.

1 Group in
 (6 Credits in SPAN @ Label "Spanish") or
 (6 Credits in FREN @ Label "French") or
 (6 Credits in ITAL @ Label "Italian")
 RuleTag SOC_CREDITS=6
 Label "Language option";

Intro to Math

Only one course is listed and it appears in the Course Number column.

The rule’s label is placed in the Course Title column. The rule is scribed with credits and its value
is placed in the Reqrd Hours column.

3 Credits in MATH 12@

 Degree Works | Technical Guide 5.0.3.1 105

 Label "Intro to Math ";

This is line 1 of the rule remark. This is line 2 of the rule remark.

The rule remarks appear above the rule to which they are attached if the vShowRuleRemarks
setting in the stylesheet is set to Y.

Communication

This is a subset rule so the subset’s label appears with a grey background. The SOC_CREDITS
on the subset are optional but if found the value is placed in parentheses as an FYI.

Each of the rules in the subset is processed normally but each shows with a hyphen to show it
belongs to the subset.

beginsub
 3 Credits in COMM 201 Label "Basic Speech";
 3 Credits in COMM 202 Label "Intro to Debate";
 2 Credits in LARC 245 Label "Intro to Landscape";
endsub
 RuleTag SOC_CREDITS=9
 Label "Communication";
Remark "This is line 1 of the rule remark. "
Remark "This is line 2 of the rule remark. "

The report does show the Course, Group, and Subset rules from the audit.

The RuleComplete and RuleIncomplete rules appear based on the
vShowRULECOMPLETERules and vShowRULEINCOMPLETERules flags in the stylesheet.

The Noncourse, Block and Blocktype rules are never shown.

Electives for degree

Classes appearing in the fall-through section of the audit appear in the Electives for degree
section. Since these are not associated with any specific requirement the class’s course number
and discipline are placed in the Course Number column and the class’s title is placed in the
Course Title column. The Reqd Hours columns is always left blank since these classes are not
requirements.

 Degree Works | Technical Guide 5.0.3.1 106

Credit Hours Awarded, Needed and Course Category

SOC DNS Course Category Code

RD987B appears in this column because the requirement was scribed with it as the
SOC_CATALOG. It so happens that ELENA 101 is applying to this requirement but the value
would have appeared in this column even if the class did not yet apply.

3:5 Credits in ELENA 101
 RuleTag SOC_CATALOG="RD987B"
 RuleTag SOC_LABEL="Environmental Research"
 Label "This should not appear - see SOC_LABEL";

Credit Hours Awarded
3 credits appear in the DSST column because LARC 245 has an Attribute value of DSST.

Resident
3 credits appear in the Resident column for these three classes because they were taken at the
home institution.

Note: If a class from the rad_class_dtl happens to have one of the SOC attributes associated with
it then the credits for the class will show up in both the Resident column and one of the other
columns. It is assumed that the SOC attributes will only be associated with transfer records on
the rad_transfer_dtl. For transfer records, the class’s credits will only show up in the Transfer
column if the class does not have any of the SOC attributes associated with it.

 Degree Works | Technical Guide 5.0.3.1 107

TOTALS

The 70 appearing here is the total credits scribed in the degree block. This is not a total of the
Reqd Hours summed together and thus will most likely not match the summation of the credits
listed in the fields above.

The 24.5 credits is the total number of in-residence credits applied to rules added to those in the
fall-through section.

The 3 credits is the total number of transfer credits applied to rules added to those in the fall-
through section. These transfer credits do not include any of the transfer credits that have any of
the SOC attributes; these credits are those transfer records that do not have any of the SOC
attributes.

The next seven columns contain the sum of credits for each of the SOC attributes. The two 3
values you see here are the total number of CLEP and DSST credits.

The 36.5 credits is the number of credits still needed by the degree. This is not a summation of
the fields in the Needed column above it. Instead this is simply the number of credits still needed
to meet the total required by the degree.

Note: In this audit one of the DSST classes applies to two different requirements in two different
blocks. The credits for the class are only counted once in this totals value however. This means
that these totals fields for the SOC attributes, and also the Resident and Transfer values, may not
be the summation of all of the credits in the fields above them; each class’s credits is only
counted once toward the total number.

Note: All of the credits in the TOTALS line except for the last number (Needed) will include the
credits in the fall-through section even if the UCX-CFG020 DAP14 Fallthu Counts in Overall flag
is set to N.

Footer

This text can be changed by altering the LabelFooterStatement variable in DGW_SOC.xsl – but
you should contact your SOC office before making changes to this text as it currently represents
the approved format.

Setup Summary

Shepherd security keys for SOC

SDSOCMIL show SOC Tab
SDSOCRUN allow processing new SOC audits
SDSOCHIS show SOC History tab

 Degree Works | Technical Guide 5.0.3.1 108

SDSOCDEL allow deletion of historic SOC audits
SOCFREEZ allow freezing of SOC audits
SOCDESCR allow entering a description when saving a SOC audit

These keys are not assigned to any user class (shp group) – you need to assign these keys in
SHPCFG or Controller.

Audit notes

1. SOC history obeys the same UCX-CFG020DAP14 History Depth setting when saving audits

– if the depth is set to 3 you will end up with 3 academic audits and 3 SOC audits.

Scribe notes

1. No special blocks are needed.
2. No special requirements are needed.
3. Update appropriate requirements using the SOC RuleTags

a. SOC_CATALOG
b. SOC_LABEL
c. SOC_CREDITS
d. SOC_ADVICE

4. Starting block needs Credits qualifier

Student Data

• Informational Data (rad_report_dtl)
 using UCX-BAN080 (or report.client.properties for Colleague schools)
• SOC Type attributes (rad_transfer_dtl)

UCX Tables

1. UCX-AUD032 – setup at least one SOC freeze type – “SOCFRZ”
2. UCX-RPT036 WEB60 SOC Report – make sure it exists and has DGW_SOC.xsl as the

stylesheet.
3. UCX-BAN080 – used to provide sql statements to extract SOC information into the DW

database from Banner. All SOC data needs to be bridged to the rad_report_dtl.
(Colleague will use the report.client.properties file in admin/common instead of UCX-
BAN080)

Stylesheet settings

You can show/hide the block titles and credits using this flag:
<xsl:variable name="vShowBlockHeaders">Y</xsl:variable>

You can show/hide the header and rule remarks and the header advice using these flags:
<xsl:variable name="vShowHeaderRemarks">Y</xsl:variable>
<xsl:variable name="vShowRuleRemarks">Y</xsl:variable>
<xsl:variable name="vShowHeaderAdvice">Y</xsl:variable>

 Degree Works | Technical Guide 5.0.3.1 109

You can show/hide the RuleComplete and RuleIncomplete requirements using these flags:
<xsl:variable name="vShowRULECOMPLETERules">Y</xsl:variable>
<xsl:variable name="vShowRULEINCOMPLETERules">Y</xsl:variable>

You can display the name of the transfer school in the Notes field using this flag. However, for the
CLEP, DSST, etc classes, whatever is in the transfer school field will also display.
<xsl:variable name="vShowTransferSchoolInNotes">N</xsl:variable>

You can display the class’s grade next to it using this flag. Example, “MATH 123 (B)”
<xsl:variable name="vShowClassesAppliedGrade">N</xsl:variable>

You can control the maximum number of courses from the rule to display in the Course Number
field using this setting:
<xsl:variable name="vMaxCoursesToShow">5</xsl:variable>

This setting controls the text above the fall-through section:
<xsl:variable name="vFallthroughHeading">Electives for degree</xsl:variable>

When more than the vMaxCoursesToShow courses are found on a rule and the rule does not
have ProxyAdvice or SOC_ADVICE this text will display in the Course Title column.
<xsl:variable name="vSeeCatalogText">See Catalog</xsl:variable>

These are the attributes associated with each type of credit awarded. If you need to use an
attribute value that differs from the standard you can specify the attribute here.
<xsl:variable name="vSVSC-Attribute">SVSC</xsl:variable>
<xsl:variable name="vMOS-Attribute">MOS</xsl:variable>
<xsl:variable name="vCLEP-Attribute">CLEP</xsl:variable>
<xsl:variable name="vDSST-Attribute">DSST</xsl:variable>
<xsl:variable name="vECE-Attribute">ECE</xsl:variable>
<xsl:variable name="vCRTX-Attribute">CRTX</xsl:variable>
<xsl:variable name="vSOCO-Attribute">SOCO</xsl:variable>

If your school is on the semester system then use this setting. If your school is on the quarter
system then move the text inside the square brackets on the second line.
<xsl:variable name="LabelCalendar">
Semester Hours: [X]
Quarter Hours: []
</xsl:variable>

These four settings let you control the other text that appears on the report. You should contact
the SOC office before making modifications to this text.
LabelPrivacyStatement
LabelCopies
LabelAgreement
LabelFooterStatement

 Degree Works | Technical Guide 5.0.3.1 110

Split Credits
Split credits occur in situations where a course is valued at more credits than is required. In that
situation, what should happen to the "excess" credits? The default behavior of Degree Works is
to move the course to another block or to the fall-through section of the audit if MAXTERM or
MAXCREDITS is exceeded. The Scribe reserved words SPMAXTERM and SPMAXCREDIT can
be used to force the excess credits to be applied by the Auditor to other places in the audit. Use
the SPMAXTERM and/or SPMAXCREDIT block qualifiers when the Auditor Engine should split
the credits automatically.

Syntax
The Parser Engine allows two block qualifiers for split credits: SPMAXTERM and
SPMAXCREDIT. These two reserved words are extensions of the MAXTERM and MAXCREDIT
qualifiers. The "SP" prefacing MAXTERM and MAXCREDIT signals to the Auditor Engine that the
credits are to be split if the maximum is reached.

The format for MAXCREDIT is:

MAXCREDIT[S] real [IN | FROM] course_list

The format for SPMAXCREDIT follows:
SPMAXCREDIT[S] real [IN | FROM] course_list

The format for MAXTERM is:
MAXTERM {real CREDIT[S] | int CLASS[ES]} [IN | FROM] course_list

The format for SPMAXTERM follows:

SPMAXTERM {real CREDIT[S] [IN | FROM] course_list
where:

- course_list is a list of courses, e.g., MATH 101, 102, CHEM 300:400, PHYS @
- int is a numeric value from 1 to 3 digits long
- real is a decimal value with up to 3 digits on each side of the decimal

SPMAXTERM and SPMAXCREDIT are only allowed as block qualifiers. SPMAXTERM and
SPMAXCREDIT are NOT allowed as rule qualifiers. SPMAXTERM is only allowed with
CREDITS.

Scribe Guided Edit Mode is not setup to add these qualifiers. While in guided edit mode, you
may construct your qualifiers as if they were MAXCREDITS and MAXTERM qualifiers and
manually enter the necessary "SP" prefix.

Auditor Engine
The Auditor Engine is able to determine where the excess should be applied by examining the
block in which the SPMAXTERM or SPMAXCREDIT is found. If this qualifier is in the starting
block then the Auditor puts all excess credits and classes into the over-the-limit list. If the split
credit qualifier is found in any block except the starting block, then the Auditor tries to apply the
excess credits to rules in next or previous blocks. If the excess cannot be applied to other blocks
then the excess goes to fall-through.

 Degree Works | Technical Guide 5.0.3.1 111

Class Count
If a course is split across two blocks, BLOCK1 and BLOCK2, then the course is counted as a
class in the class totals for BLOCK1 and is also counted as a class in the totals for BLOCK2. It
does, however, only count once in the overall class totals for all blocks.

BEGIN # BLOCK1
 SPMAXCREDITS 3 IN CHEM @
 MAXCLASSES 2 IN CHEM @
;
9 CREDITS IN CHEM @, PHYS @, MATH @ LABEL "Science stuff";
END.

BEGIN # BLOCK2
 MAXCLASSES 2 IN CHEM @
;
7 CREDITS IN CHEM @, GEOG @ LABEL "More science";
END.

If CHEM 105 was taken for 5 credits then the Auditor Engine may apply 3 credits to BLOCK1 and
split the course so that the other 2 credits can be applied to BLOCK2. The CHEM course would
be counted as a course in the MAXCLASSES qualifier in both blocks.

Exclusivity
Splitting a class between two blocks does not mean that the class is considered
NONEXCLUSIVE. It will not be counted in a block's NONEXCLUSIVE count because the split
course will be treated as if it is really two different courses.

BEGIN # BLOCK1 # not the starting block
 SPMAXCREDITS 3 IN CHEM @
 NONEXCLUSIVE 1 CLASSES (ALLBLOCKS)
;
9 CREDITS IN CHEM @, PHYS @, MATH @ LABEL "Science stuff";
END.

BEGIN # BLOCK2
;
7 CREDITS IN CHEM @, GEOG @ LABEL "More science";
1 class in math 1@ label "low level math";
END.

If CHEM 120 is applied to BLOCK1 for 5 credits the Auditor Engine may keep three of the credits
in BLOCK1 and apply the other 2 credits to BLOCK2. If MATH 156 is applied to BLOCK1, the
Auditor Engine would see that it can also apply this class to BLOCK2 because of the
NONEXCLUSIVE qualifier. CHEM 120 is not considered as a NONEXCLUSIVE class while the
placing of MATH 156 into two blocks is. CHEM 120 could, however, be applied nonexclusively to
another block for 3 credits instead of MATH 156. Only the portion of the course that is applied to
BLOCK1 can be applied elsewhere as a nonexclusive course.

Note: It is recommended that you do not use NONEXCLUSIVE with either SPMAXCREDITS or
SPMAXTERM in the same Scribe block. The example shown above is for the purpose of
illustrating the exclusivity of classes that have been split between blocks and is not an
endorsement of the use of these two header qualifiers concurrently. The use of this combination
of qualifiers may give unpredictable audit results.

 Degree Works | Technical Guide 5.0.3.1 112

Multiple Splits
A class can be split as many times as needed. The course may have been taken for a non-
integer credit amount or the SPMAXCREDITS could have specified a non-integer value number
of credits.

BEGIN # BLOCK1 - not the starting block
 SPMAXCREDITS 3 IN CHEM @
;
9 CREDITS IN CHEM @, PHYS @, MATH @ LABEL "Science stuff";
END.

BEGIN # BLOCK2 - not the starting block
 SPMAXCREDITS 1.5 IN CHEM @
;
7 CREDITS IN CHEM @, GEOG @ LABEL "More science";
END.

BEGIN # BLOCK3
;
4 CREDITS IN CHEM @, GEOG @, ANTH @ LABEL "Even More science";
END.

If CHEM 120 was taken for 6 credits then the Auditor Engine could apply 3 credits to BLOCK1,
1.5 credits to BLOCK2, and the remaining 1.5 credits to BLOCK3. If CHEM 120 was taken for 6.7
credits then the Auditor could apply 3 credits to BLOCK1, 1.5 credits to BLOCK2, and the
remaining 2.2 credits to BLOCK3.

Output
On output, Degree Works on the Web shows the courses that were split with their modified
number of credits on the rule to which they were applied. Any part of a split credit course that
ended up in over-the-limit or fall-through is also reported with its modified number of credits.

GPA
To be accurate, the GPA credits and the GPA grade-points should be reduced by the fraction of
the course that was applied. This has the biggest implication when part of a course gets put into
over-the-limit. If a 5 credit class that has 20 grade-points gets split into two rules where one gets
3 credits and the other 2 credits, then the Auditor Engine also splits the grade-points and credits
used in the GPA calculation.

Split Power
One block has the power to tell the Auditor Engine that a course is to be split across blocks. The
block to which the remaining credits may be applied does not have to indicate that it is OK to split
credits.

BEGIN # BLOCK1 - not the starting block
 SPMAXCREDITS 3 IN CHEM @
;
9 CREDITS IN CHEM @, PHYS @, MATH @ LABEL "Science stuff";
END.

BEGIN # BLOCK2

 Degree Works | Technical Guide 5.0.3.1 113

;
7 CREDITS IN CHEM @, GEOG @ LABEL "More science";
END.

If CHEM 140 (5 credits) is applied to BLOCK1 then the Auditor Engine can split this course into
BLOCK1 and BLOCK2 even though BLOCK2 does not explicitly give permission. As long as the
Auditor Engine has permission from one of the blocks it can split the course as necessary.

Other Qualifiers
The split credit qualifiers cannot change the behavior of other block or rule qualifiers. The
maximum number of credits specified by another qualifier cannot be exceeded even if a split
credit qualifier exists in the same block header. Another block qualifier may remove the whole
course from a block without allowing the split credits qualifier to split a course.

BEGIN
 MAXPERDISC 2 CREDITS IN (CHEM, PHYS)
 SPMAXCREDITS 3 IN CHEM @
;
9 CREDITS IN CHEM @, PHYS @, MATH @ LABEL "Science stuff";
END.

If a 4 credit chemistry course fits on this block then the Auditor Engine will end up removing the
whole course because of the MAXPERDISC qualifier. This qualifier does not have the capability
of splitting courses and therefore does not do so. Blocks like the above should be avoided. The
qualifiers that you insert into blocks should not conflict with each other.

The Auditor Engine processes the split credit qualifiers first, so courses will be split, if needed,
before other qualifiers are encountered.

BEGIN
 MAXPERDISC 3 CREDITS IN (CHEM)
 SPMAXCREDITS 3 IN CHEM @
;
9 CREDITS IN CHEM @, PHYS @, MATH @ LABEL "Science stuff";
END.

If a 4 credit chemistry course fits on this block then the Auditor Engine first splits the course. It
then continues to process the MAXPERDISC qualifier and sees that the maximum has not been
exceeded.

If there are multiple split credit qualifiers in the block then the Auditor Engine must obey all
qualifiers.

BEGIN
 SPMAXTERM 2 CREDITS IN CHEM @
 SPMAXCREDITS 3 IN CHEM @
;
9 CREDITS IN CHEM @, PHYS @, MATH @ LABEL "Science stuff";
END.

If a 4 credit chemistry course fits on this block then the Auditor Engine first splits the course
leaving 3 credits in this block because of SPMAXCREDITS. It then continues to process the
SPMAXTERM qualifier and sees that the maximum has been exceeded and splits the course
leaving only 2 credits in this block.

 Degree Works | Technical Guide 5.0.3.1 114

Best Fit
Due to the best fit algorithm used by the Auditor Engine, a course may be placed on a rule
without splitting it across multiple rules. The split credit qualifier is only used by the Auditor
Engine after it places the course in the current block as the best fit.

BEGIN # BLOCK1
;
10 CREDITS IN CHEM 102, 103, PHYS 113:120;
END.

BEGIN # BLOCK2 # not the starting block
 SPMAXCREDITS 2 IN CHEM 102
;
10 CREDITS IN CHEM @, PHYS @;
END.

If a student takes CHEM 102 for 5 credits, then there are two possible places that the course
could fit. The Auditor Engine will see that the best fit for the course is in BLOCK1 (all else being
equal, e.g., no PHYS courses were taken). The Auditor Engine will NOT try to apply 2 credits of
CHEM 102 to BLOCK2 and the rest to BLOCK1. If the SPMAXCREDITS was on BLOCK1 then
the Auditor Engine would indeed split the credits across the blocks.

Fall-Through
If a split course only fits or is only needed in one location then the remaining number of credits
goes to fall-through if the split qualifier is not in the starting block.

BEGIN # not the starting block
 SPMAXCREDITS 2 IN CHEM @
;
10 CREDITS IN CHEM @, PHYS @;
END.

If this is the only place where CHEM 102 can be applied then the Auditor Engine will split this 4
credit course leaving 2 here and putting the remaining 2 credits in fall-through.

Over-The-Limit
The remaining number of credits goes to over-the-limit if the split qualifier is in the starting block.

BEGIN # IS the starting block
 SPMAXCREDITS 2 IN CHEM @
;
1 block (major);
END.

BEGIN # some other block
;
10 CREDITS IN CHEM @, PHYS @;
END.

The Auditor Engine will split this 4 credit course leaving 2 credits in the block where it is applied
and putting the remaining 2 credits in over-the-limit.

 Degree Works | Technical Guide 5.0.3.1 115

Fall-Through Split
A split qualifier on the starting block counts those courses applied to all blocks and those in the
fall-through list. When processing a split qualifier the Auditor Engine may split a course that is in
fall-through by putting part of it into over-the-limit in order to satisfy the maximum.

Multiple Split Qualifiers
In a situation like that below the smallest number of the two will be kept on rules. If a 5 credit
CHEM course is taken then 3 credits of CHEM will end up in Over-The-Limit.

BEGIN # # Starting block
 SPMAXCREDITS 3 IN CHEM @
 SPMAXTERM 2 CREDITS IN CHEM @
;
...
...
...
END.

Transfer Courses
Transfer Courses and GPA Calculations

The UCX-CFG020 DAP14 parameter has values to control the application of transfer courses to
the MINGPA and MINGRADE Scribe Reserved Words and their use in GPA calculations.

 Degree Works | Technical Guide 5.0.3.1 116

Web Interface - Tool and Audits

Overview
The most important function of Degree Works is to perform a degree audit. There are two kinds of
audits: real and what-if. A "real" audit processes a student's coursework against the requirements
associated with the student's degree data from the student system. The results of a real audit are
stored in a BLOB-like structure in the database. A "what-if" audit processes a student's
coursework against the requirements associated with pretend degree data and/or pretend course
work. The what-if feature is valuable when a student want to see "what" the audit results would be
"if" the major, minor, concentration, specialization, liberal learning, or catalog year were changed
or if the student complete future planned courses. The results of a "what-if" audit are only saved if
the UCX-CFG020 DAP14 What-if History Count setting is “01” or greater.

The auditor performs one audit at a time for a particular student/school/degree combination. The
auditor takes input from several locations:

- Run-time options: student ID, school, degree, include in-progress, and cutoff term
- Student curriculum bridged from the student system
- Student classwork history bridged from the student system
- List of requirements blocks based on the student’s curriculum
- Parsed requirement blocks – stored in the daptrees directory on the classic server
- Exceptions entered by advisors or the registrar’s office
- Notes entered by advisors
- Configuration settings (UCX-CFG020)

The audit results are stored in the database in a binary fashion. The results are then returned the
web page as an XML document or are converted into the CPA tables – comprised mostly of the
dap_result-dtl.

 Degree Works | Technical Guide 5.0.3.1 117

Degree Works Web Localizations

Introduction
In order to localize Degree Works reports at your institution, it is necessary to modify certain
HTML, JavaScript, XML, XSL and CSS files. Degree Works utilizes XML and XSL technology in
combination with HTML to display web reports. Degree Works generates an XML representation
of the degree audit, which is rendered in a web browser using XSL to transform the document
into HTML. Most of these localizations are managed using the Composer application. See the
Degree Works Composer Administrative Guide for additional information.

Most of the details in this section apply to the Dashboard and not the Responsive Dashboard.
Please also review the Responsive Dashboard Administrative Guide for details on setting up the
Responsive Dashboard.

Section Organization
This Section of the Degree Works Technical Guide has been divided into the following sections:

Terms and Definitions. Defining terms used in this document.

Dashboard File List. A listing of each Degree Works file in the DashboardServlet war file.

Web Interface. The look and feel of the interface.

Web Interface: Header. Special configurations for the header section.

Miscellaneous Setup Files. A handful of files that are intended to be localized.

Localizing Worksheets. Reports viewed through the Worksheets, History, What-If, and Look-
Ahead tabs.

Localizing the Student Educational Planner. Interface viewed through the Planner tab.

Special Topic: Reintegrating Localizations. How to reintegrate your localizations when
processing a Degree Works software update.

Special Topic: Shepherd Scripts. Not all localizations you want to make can be made to files
in the DashboardServlet war file. Localizations to the Shepherd Scripts may be required.

Note: If you make localizations to the Web worksheets you will most likely want to make the
same modifications to the FOP files used for PDF and printed worksheets. These are located in
your $LOCAL_HOME/xsl directory.

 Degree Works | Technical Guide 5.0.3.1 118

Terms and Definitions
Here are terms that will be used throughout this document. It is assumed you know and
understand all these terms if you are to use this document to localize Degree Works.

Term Definition
HTML Hypertext Markup Language, the standard language for web pages. These

files are named with an “.html” extension.
CSS Cascading Style Sheets, a language used to describe the presentation of

HTML documents. Degree Works uses CSS to define the colors and
images that are presented to the web page. These files are named with a
“.css” extension.

JavaScript Web scripting language used by Degree Works. JavaScript files are named
with a “.js” extension.

Frames A specific type of HTML programming used heavily by Degree Works
JSON JavaScript Object Notation. Data is returned from the classic server to the

Responsive Dashboard in this format.
React (aka React.js or ReactJS) A JavaScipt library used to create the

Responsive Dashboard interface.
XML Extensible Markup Language, a general-purpose markup language that

allows users to define their own tags. Some Degree Works data are
returned to the web browser as XML, whereupon XSL or JavaScript parses
through them to extract information to display on the web as HTML.
XML is used mostly by the Dashboard with limited use in the Responsive
Dashboard.

XSL Extensible Stylesheet Language, a language which allows the user to
describe how to transform XML data. Degree Works uses XSLT to
transform XML to HTML. These files are named with an “.xsl” extension.
XSL files are used mostly by the Dashboard with limited use in the
Responsive Dashboard.

XML Data Island XML data that is embedded within an HTML page. Degree Works uses
JavaScript to navigate this data island to extract specific data for different
purposes, such as in the search results.

DashboardServlet File List
These files are used by the Dashboard and not by the Responsive Dashboard.
AuditBlocks.xsl Included in the main worksheet stylesheets; this is

where you make your localizations for the blocks and
the requirements within them

AuditBlocksTF.xsl Stylesheet for the displaying the contents of blocks in
the Transfer Finder worksheet

AuditDisclaimer.xsl Disclaimer text stored as XSL
AuditDisclaimer_Aid.xsl Disclaimer text stored as XSL for the Financial Aid

Audit
AuditDisclaimer_Ath.xsl Disclaimer text stored as XSL for the Athletic Eligibility

Audit
AuditExceptions.xsl Exceptions Tab – Audit Report XSL Stylesheet
AuditHD.xsl Worksheets Tab – Diagnostics Audit XSL Stylesheet
AuditLegend.xsl Included in the worksheet stylesheets; this is where

you make your localizations for the legend

 Degree Works | Technical Guide 5.0.3.1 119

AuditLocalizationsTF.xsl Included in the Transfer Finder worksheet; this is where
you make your localizations for special features unique
to your Transfer Finder audit

AuditSections.xsl Included in the main worksheet stylesheets; this is
where you make your localizations for the sections like
Fall-Through and Over-The-Limit.

AuditSEP.xsl Planner Tab (Student Educational Planner) – Planner
Audit Report XSL Stylesheet

AuditStudentHeader.xsl Included in the worksheet stylesheets; this is where
you make your localizations for the student header

AuditStudentHeaderSelfService.xsl Student Header for the Transfer Equivalency Self-
Service worksheet

AuditTranscript.xsl Worksheets Tab – Class History Report XSL
Stylesheet sorted by term

AuditTranscript2.xsl Worksheets Tab – Class History Report XSL
Stylesheet sorted by discipline

BrowserSniffer.js JavaScript that checks for valid web browsers for
compatibility

ClassTranscript.xsl Athletic Eligibility – Class Summary report stylesheet
CommonTemplates.xsl Common templates used by several stylesheets
CourseInfo.xsl Course Link styleheet
CurrRules.xsl What-if Curriculum Rules stylesheet
default.jsp
DegreeInfo.jsp Installed GPA Calculator “Total Credits Required” link –

intended for localization
DGW_AdvisorDataIsland.js JavaScript that parses an XML Data Island to manage

a list of advisors for emailing.
DGW_Aid_Report.xsl Financial Aid Report XSL Stylesheet
DGW_Ath_Report.xsl Athletic Eligibility XSL Stylesheet
DGW_AuditViewReport.xsl Stylesheet used by the planner audit worksheet
DGW_Charts.js JavaScript that is used by the GPA calculators
DGW_Control.js JavaScript that contains miscellaneous shared

functions.
DGW_DragAndDrop.js JavaScript that contains functions for dragging and

dropping courses in the Planner (Student Educational
Planner)

DGW_EMExceptionsDataIsland.js JavaScript that parses an XML Data Island to manage
Exception Management “Exceptions Report”.

DGW_EMPetitionsDataIsland.js JavaScript that parses an XML Data Island to manage
Exception Management “Manage Petitions Waiting
Approval,” “Apply Approved Petitions,” “View Petitions
Applied as Exceptions,” “View Rejected Petitions,” “Fix
Petition Status”

DGW_Exceptions.js JavaScript that contains functions for saving and
deleting exceptions (Exceptions Tab)

DGW_Functions.js JavaScript that contains miscellaneous shared
functions

DGW_GPADataIsland.js JavaScript that parses an XML Data Island to manage
the GPA Term calculator in-progress classes.

DGW_HistoryDataIsland.js JavaScript that parses an XML Data Island to generate
a list of historic audits in the History Tab

DGW_LookAhead.js JavaScript that contains functions for the Look Ahead
Tab

DGW_objKeyEventGlobal.js JavaScript that contains miscellaneous shared
functions.

 Degree Works | Technical Guide 5.0.3.1 120

DGW_objKeyEventHandler.js JavaScript that contains miscellaneous shared
functions.

DGW_Petitions.js JavaScript that contains functions for the Petitions Tab
DGW_Refresh.xsl Reads the response from the refresh student data

request
DGW_Registration.xsl Worksheets Tab “Registration Checklist” XSL

Stylesheet
DGW_ReloadMain.js JavaScript that contains miscellaneous shared

functions
DGW_ReloadSearch.js JavaScript that contains miscellaneous shared

functions
DGW_Report.xsl Worksheets Tab “Student View,” “Registrar Report,”

“Graduation Checklist” XSL Stylesheet
DGW_SearchDataIsland.js JavaScript that parses an XML Data Island to manage

the Search screen
DGW_SEPCompareView.js JavaScript that contains functions for the Planned vs.

Taken report in the Planner (Student Educational
Planner) Tab

DGW_SEPDataIsland.js JavaScript that parses an XML Data Island to manage
the Planner (Student Educational Planner) Tab (both
Notes and Calendar “Edit” mode)

DGW_SEPEdit.js JavaScript that contains functions for the Planner
(Student Educational Planner) Tab (drawing the form
and saving the plan)

DGW_SEPView.js JavaScript that contains functions for the Planner
(Student Educational Planner) Tab (View mode)

DGW_SimpleSearchDataIsland.js JavaScript that parses an XML Data Island for a simple
student ID search

DGW_SkinnyReport.xsl Stylesheet used for the worksheet in the classic
planner

DGW_SOC.xsl Worksheets Tab “SOC Report” XSL Stylesheet
DGW_StudentFunctions.js JavaScript that contains miscellaneous shared

functions
DGW_TermDataIsland.js JavaScript that parses an XML Data Island for terms
DashboardStyles.css All Degree Works styles are defined here. (except for

the SEP3, Transfer Finder, Scribe, Responsive
Dashboard (including SEP4), Transit and Controller)

DGW_Tabs.js JavaScript that contains functions for the tabs in
Degree Works

DGW_TMPDataIsland.js JavaScript that parses an XML Data Island to manage
the Templates Tab

DGW_TMPEdit.js JavaScript that contains functions for Templates
(drawing the form and saving the template)

DGW_Window.js JavaScript that contains functions for creating pop-up
confirmation windows

error.jsp Handles the display of an error returned from the
classic server

FormatDate.xsl Formats the date display based on UCX-CFG020 WEB
setting for the worksheets.

ImageSwap.js JavaScript that contains functions for manipulating the
Tab images

jquery.min.js Jquery javascript utility functions
jquery-ui.min.js Jquery javascript ui functions
login.jsp
logout.jsp

 Degree Works | Technical Guide 5.0.3.1 121

Notes.xsl Display the notes on the Notes tab
Petitions.xsl Display the petitions on the Petitions tab
PlanSEP.xsl Planner (Student Educational Planner) Tab View Mode

(Both Notes Mode and Calendar Mode)
PlanSEPCompareView.xsl Planner (Student Educational Planner) Tab “Planned

vs. Taken” Report
ProgressBar.xsl The worksheet progress bar logic
RADData.xsl Worksheets Tab “Student Data Report”
SD_AdviseeWait.jsp Web page that displays when an automatic advisee

search is performed
SD_BodyFrameset.html Creates the frames within the body of the main window
SD_DepartWait.jsp Web page that displays when an automatic department

search is performed
SD_Exceptions_Introduction.jsp Web page that instructs the user to select an exception

type. It displays when the Exceptions Tab is clicked
SD_Exceptions_LoadContextFrame.jsp Web page for loading Exceptions Tab information
SD_Exceptions_LoadFrame.jsp Web page for loading Exceptions Tab information
SD_Exceptions_NoSave.jsp Web page for loading Exceptions Tab information
SD_Exceptions_Save.jsp Web page for loading Exceptions Tab information
SD_ExceptionsSort.html Web page for Exception Management “Exceptions

Report”
SD_ExceptionsSortCount.html Web page for Exception Management “Exceptions

Report”
SD_Exp_Mgt_Introduction.jsp Web page for Exception Management introduction
SD_ExpHeader.jsp Web page for the Exception Management header. It is

intended to be localized similarly to
SD_HeaderFrame.jsp

SD_ExpMgt_NoSave.jsp Web page for Exception Management “Apply Approved
Petitions”

SD_ExpMgt_Save.jsp Web page for Exception Management “Apply Approved
Petitions”

SD_ExpMgtLogon.jsp Web page for logging on to Exception Management
SD_GeneralIntroduction.jsp Web page that displays when the user first logs on. It

is intended to be localized.
SD_GPALoadFrameForm.jsp Web page for GPA Calc tab for describing the different

calculators
SD_HeaderFrame.jsp Web page for the overall header. It is intended to be

localized similarly to SD_ExpHeader.jsp
SD_HelpAdmin.jsp Web page for context-based help: Admin Tab. It is

intended to be localized.
SD_HelpAid.jsp Web page for context-based help: Financial Aid Tab. It

is intended to be localized.
SD_HelpAidHistory.jsp Web page for context-based help: Financial Aid

History Tab. It is intended to be localized.
SD_HelpAth.jsp Web page for context-based help: Athletic Eligibility

Tab. It is intended to be localized.
SD_HelpAthHistory.jsp Web page for context-based help: Athletic Eligibility

History Tab. It is intended to be localized.
SD_HelpAuditHistory.jsp Web page for context-based help: History Tab. It is

intended to be localized.
SD_HelpAuditRun.jsp Web page for context-based help: Worksheets Tab:

Process New. It is intended to be localized.
SD_HelpAuditView.jsp Web page for context-based help: Worksheets Tab:

View. It is intended to be localized.

 Degree Works | Technical Guide 5.0.3.1 122

SD_HelpExceptions.jsp Web page for context-based help: Exceptions Tab. It is
intended to be localized.

SD_HelpExpMgt.jsp Web page for context-based help: Exception
Management. It is intended to be localized.

SD_HelpFind.jsp Web page for context-based help: Student Search. It is
intended to be localized.

SD_HelpGPACalculator.jsp Web page for context-based help: Student Search. It is
intended to be localized.

SD_HelpLookAhead.jsp Web page for context-based help: Look Ahead Tab. It
is intended to be localized.

SD_HelpNotes.jsp Web page for context-based help: Notes Tab. It is
intended to be localized.

SD_HelpPetitions.jsp Web page for context-based help: Petitions Tab. It is
intended to be localized.

SD_HelpSEP.jsp Web page for context-based help: Planner (Student
Educational Planner) Tab. It is intended to be localized.

SD_HelpSoc.jsp Web page for context-based help: SOC Tab. It is
intended to be localized.

SD_HelpSocHistory.jsp Web page for context-based help: SOC History Tab. It
is intended to be localized.

SD_HelpTMP.jsp Web page for context-based help: Planner Template
Tab. It is intended to be localized

SD_HelpWhatIfAudit.jsp Web page for context-based help: What-If Tab. It is
intended to be localized.

SD_HelpWhatIfHistory.jsp Web page for context-based help: What-If History Tab.
It is intended to be localized.

SD_Historic_Introduction.jsp Web page for History Tab telling the user how to use
the service.

SD_LoadFrameForm.html Web page for loading into many different frames.
SD_LookLoadFrameForm.jsp Web page for loading into a Look Ahead frame
SD_MainBackground.html Web page for loading into the main background
SD_MainBorderLeft.html Web page for loading into the left border around the

interface
SD_MainBorderRight.html Web page for loading into the right border around the

interface
SD_MainFooter.jsp Web page for loading into the bottom border around

the interface
SD_PlainBorder.html Web page for loading into the search page
SD_SearchWait.jsp Web page for displaying a message while a search is

performed
SD_SEPAuditFrameForm.html Web page for loading into the Planner (Student

Educational Planner) Audit frame
SD_SEPPlanFrameForm.html Web page for loading into the Planner (Student

Educational Planner) Plan frame
SD_StudentBody.jsp Web page for loading into the search page
SD_StudentFooter.jsp Web page for loading into the search page bottom

border
SD_StudentSort.html Web page for loading the search results into a sortable

form
SD_TMPPlanFrameForm.html Web page for loading into the Template Tab.
SD_TMPTop.jsp Web page in the context area of the Templates Tab.

The default reads, “Help your students Plan for
Success”

SD_Waiting.jsp Web page for issuing a “Please wait while your request
is processed” message

 Degree Works | Technical Guide 5.0.3.1 123

SD_WhatIf_LoadFrame.jsp Web page for loading into the What-If Tab.
SD_WhatIfCurrRules_LoadFrame.jsp Web page for loading into the What-If Tab when

curriculum rules is enabled.
SD_WhiteFrame.html Web page containing a white background for general

use
SelfServiceAudit.xsl Transfer Equivalency Self-Service audit
SEP_Approval_Context.xsl Classic Planner approval context frame stylesheet
SEP_Context.xsl Classic Planner context frame stylesheet
SEP_Save.xsl Classic Planner save action stylesheet
SEP_SaveApprStatus.xsl Classic Planner save approval action stylesheet
SEP_TemplateSearch.xsl Classic Planner template search stylesheet
SEP_TemplateSearchResults.xsl Classic Planner template search results stylesheet
SupportedBrowserCheck.js JavaScript that checks for valid web browsers for

compatibility
TMP_Buttons.xsl Template Tab Buttons frame XSL Stylesheet
TMP_Context.xsl Template Tab context frame XSL Stylesheet
TMP_Save.xsl Template Tab Save action XSL Stylesheet
TMP_Search.xsl Template Tab Search XSL Stylesheet
ToolTip.js JavaScript for displaying hints
TransferAudit.xsl Stylesheet for audits in Transfer Finder
TransferAuditSummary.xsl Stylesheet for audit summary in Transfer Finder
TreqDisclaimer.xsl Disclaimer text for Transfer Equivalency Admin audit

worksheet
TreqReportArticulate.xsl Stylesheet for Transfer Equivalency Admin articulation

and audit worksheet
TreqReportAudit.xsl Stylesheet for Transfer Equivalency Admin audit

worksheet
WhatIf3.xsl What-if with specializations stylesheet

Note: You may have more web files installed than the ones listed here. Those extra files
represent deprecated code or images that are no longer used.

Web Interface
These comments apply to the Dashboard and not by the Responsive Dashboard.

TIP: Utilizing the “View Source” option in your web browser to see the actual HTML source is the
recommended way to determine which style is applied to the object (i.e., background color, font
color, image, etc.) you wish to localize. You may also want to try using Firebug in Firefox, or the
Google Developer Tools in Chrome as a useful tool when modifying web pages.

Every color and image you see in Degree Works is defined and can be modified either in the
HTML or in the CSS.

Web Interface – Header
These comments apply to the Dashboard and not by the Responsive Dashboard.

The header section of the interface is specially designed for localization. There are two HTML
files that are used for generating this header section:

SD_HeaderFrame.jsp (Standard header)

 Degree Works | Technical Guide 5.0.3.1 124

SD_ExpHeader.jsp (Exception Management header)

To localize the text of the links in these files, create a localized version of
DashboardServletMessages.properties with Composer and change the
dw.dashboard.header.link.* and/or dw.dashboard.exceptionManagement.header.link.*
properties values. Some links such as “Help”, “FAQ” and “Portal” will only display if they have
been enabled. This is managed with the localization.dashboard.header.show* and
localization.exceptionManagement.show* Shepherd settings.

The Portal and FAQ links are managed with the localization.dashboard.header.url* and
localization.exceptionManagement.url* Shepherd settings.
There is a UCX-CFG020 WEB setting that controls the height of this frame. This way, you can
make this header section as short or tall as you see fit. Typically, this is determined by height of
the image (a school logo, for example) you may choose to utilize. This setting is called “Header
Frame Height”. It is a two-byte entry. The unit of measure is pixels. When you modify this entry,
be sure to issue a “webrestart” so that your changes will take effect.

 Degree Works | Technical Guide 5.0.3.1 125

Miscellaneous Setup Files
These files apply to the Dashboard and not by the Responsive Dashboard.

File Name Description
DegreeInfo.jsp Static web page containing degree information for use in the GPA

Calculator’s Graduation Calculator. The intent is to give users a
source of information for “total credits required” for their specific
degree.

default.jsp Login page
AuditDisclaimer.xsl Disclaimer text for the worksheet
SD_GeneralIntroduction.jsp Introduction page that displays when a user first logs on to

Degree Works. See the screenshot below. It is intended that the
text and image on this page be localized via Composer – the text
is defined in the dw.dashboard.introduction property in
DashboardServletMessages.properties, and the image is
front_background.gif.

SD_GeneralIntroduction.jsp

 Degree Works | Technical Guide 5.0.3.1 126

Miscellaneous Configurations
There are a number of configurations you can make to certain UCX entries to further localize your
Degree Works dasboard. Here are the UCX entries and their brief descriptions:

These tables apply the Dashboard and to the Responsive Dashboard. Be sure to review the
Degree Works Configuration Technical Guide documentation for additional setttings that apply to
both dashboards.

UCX Table (Code) Description
UCX-CFG020 (WEB) Controls various settings throughout the web interface
UCX-CFG020
(WHATIF)

Controls content in the What-If tab

UCX-CFG020
(SEARCH)

Controls the search page. Include or exclude various search items such
as Degree, Major, etc.

UCX-SCR001 Defines labels for terms such as Degree, Major, Credits, etc.
UCX-STU016 Term values need to be flagged for use in the Planner (Student

Educational Planner)
UCX-AUD027 What-If major picklist filters
UCX-STU035 Catalog year values need to be flagged for use in the Planner (Student

Educational Planner)
UCX-RPT036 Report types (See below for more details)
UCX-CFG071 Predefined Note text

Localizing Worksheets
To generate the worksheets in Degree Works, an XML representation of the degree audit is
generated and returned to the browser. One of the XSL files below (based on context)
transforms that XML into a formatted HTML document.

XSL Where it is used
AuditExceptions.xsl Exceptions Tab, exceptions audit report
AuditHD.xsl Worksheets Tab, typically referred to as “Diagnostics Audit”. Do

not modify content. It is used by the support team.
AuditSEP.xsl Student Educational Planner Audit report
AuditTranscript.xsl Worksheets Tab, “Class History” – sorted by term
AuditTranscript2.xsl Worksheets Tab, “Class History” – sorted by discipline
DGW_Registration.xsl Worksheets Tab, typically referred to as “Registration Report”
DGW_Aid_Report.xsl Aid Tab, used in the standard financial aid audit reports
DGW_Ath_Report.xsl Athletic Eligibility tab, used in the standard athlete audit reports.
DGW_SOC.xsl Worksheets Tab, typically referred to as “SOC Military Report”
DGW_Report.xsl Worksheets Tab, used in the standard audit reports (except the

ones listed above)
RADData.xsl Worksheets Tab, “Student Data Report”

Typically, the only XSL that is localized is the DGW_Report.xsl file. That is the XSL that controls
the Student View, Registrar Report, and Graduation Checklist reports. This documentation will
only describe the features available in DGW_Report.xsl.

To change the Class History report to use AuditTranscript2.xsl change the XML31 entry in UCX-
RPT036.

 Degree Works | Technical Guide 5.0.3.1 127

DGW_Report.xsl, DGW_Aid_Report.xsl and DGW_Athl_Report.xsl each include and share these
three stylesheets:
AuditBlocks.xsl

AuditLegend.xsl

AuditStudentHeader.xsl

Most of your localizations will actually be made to these three files and not to the parent Report
files. You can make changes to the student header in one file allowing the changes to be seen by
all three worksheets, for example. This helps you make sure your changes show consistently
throughout the three different reports.

There are four key pieces that comprise the final web output. They are

1) Audit XML – standard XML that Degree Works generates (not available to be localized.
See next section for a brief description of the XML.)

2) UCX-RPT036 – report settings that can be changed using Controller
a. Title: This is the report name that will display in the report picklist as well as the

top of the web report.
b. XSL Stylesheet: Each report type can utilize its own specific XSL. For example,

WEB31 “Student View” is delivered to use DGW_Report.xsl. If, however, you
would rather create a new XSL (“myReport.xsl”) you can simply change this
value to myReport.xsl and Degree Works will use the new one instead.

c. Show Block Remarks
d. Show Block Qualifiers
e. Show Block Exceptions
f. Show Block Include list
g. Show Block Advice
h. Show Rule Remarks
i. Show Rule Qualifiers
j. Show Rule Exceptions
k. Show Rule Advice
l. Show Rule Requirement Text
m. Show Courses Applied
n. Show Fallthrough (Electives) section
o. Show Insufficient (Failed) section
p. Show Over-the-Limit section
q. Show In-Progress section
r. Show Notes section
s. Show Exceptions section
t. Show Errors (not implemented)
u. Show Legend
v. Show Disclaimer
w. Show Progress Bar
x. And/Or Advice
y. Show Prerequisite Indicator
z. Create Course Link
aa. Show Course Keys ONLY
bb. Show Student Header
cc. Show Student Alerts and Reminders section
dd. Show Student System GPA in header

 Degree Works | Technical Guide 5.0.3.1 128

3) DGW_Report.xsl – XSL that can be localized based on your specific needs. Any
configurations that cannot be accomplished using the UCX-RPT036 settings can be
modified here. There are, however, a few key components that will be explained here:

a. Block headers: Requirement block header sections can contain between 0 and 4
data elements in the standard DGW_Report.xsl. They are: Block Catalog Year,
Block GPA, Block Credits/Classes Applied, Block Credits/Classes Required.

i. See the “tBlockHeaderChoose” template. Here are the different
attributes of requirement blocks that you can use to identify blocks (@ =
the attribute name):

1. Block ID (@Req_id)
2. Block Title (@Title)
3. Block Type (@Req_type)
4. Block Percent Complete (@Per_complete)
5. Catalog Year Literal (@Cat_yrLit)
6. Block Value (@Req_value)
7. Catalog Year Start (@Cat_yr_start)
8. Catalog Year Stop (@Cat_yr_stop)
9. Block GPA (@GPA)
10. Block GPA Credits applied (@Gpa_credits)
11. Block Classes applied (@Classes_applied)
12. Block Credits applied (@Credits_applied)
13. Block GPA Grade Points applied (@Gpa_grade_pts)

ii. The standard DGW_Report.xsl has a few examples of how to identify

specific requirement blocks and then use specific block header templates
for those blocks.

Here is one coding example:

1. <xsl:when test="@Req_type = 'OTHER'">

 <xsl:choose>

 <xsl:when test="@Req_value = 'GENED'">

 <!-- OTHER GENED blocks -->

 <xsl:call-template name="tBlockHeader_1"/>

 </xsl:when>

 <xsl:otherwise>

 <xsl:call-template name="tBlockHeader_2"/>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:when>

This means: For blocks with a dap_block_type of
“OTHER”, if the dap_block_value is “GENED” then call
the “tBlockHeader_1” template. For blocks with a
dap_block_type of “OTHER”, if the dap_block_value is
NOT “GENED” then call the “tBlockHeader_2” template.

2. There are 16 predefined “tBlockHeader_X” templates that
encompass the different permutations of the four standard block
header data elements.

 Degree Works | Technical Guide 5.0.3.1 129

iii. There are a few XSL variables that are defined at the top of
DGW_Report.xsl. These are labels on the Degree Works web report
that can be customized by simply localizing the value of these variables.

1. LabelProgressBar: Text just above the progress bar
2. LabelStillNeeded: Installed as “Still Needed”
3. LabelAlertsReminders: Title of the Alerts and Reminders section
4. LabelFallthrough: Title of the Fallthrough section
5. LabelInprogress: Title of the In progress section
6. LabelOTL: Title of the Over-The-Limit section
7. LabelInsufficient: Title of the Insufficient section
8. LabelSplitCredits: The title of the Split Credits section
9. LabelIncludedBlocks: Installed as "Blocks included in this block"
10. vShowTitleCreditsInHint: If Y, title and credits of courses in

advice will display
11. vLabelSchool: Label for "School"
12. vLabelDegree: Label for "Degree"
13. vLabelMajor: Label for "Major"
14. vLabelCollege: Label for "College"
15. vLabelLevel: Label for "Level"
16. vLabelAdvisor: Label for "Advisor"
17. vLabelStudentID: Label for " ID"
18. vLabelStudentName: Label for "Student"
19. vLabelOverallGPA: Label for "Overall GPA"
20. vGPADecimals: Specify how many decimals to display in GPA.
21. vCreditDecimals: Specify how many decimals to display for

credit values
22. vProgressBarPercent: If Y, show the progress bar for percent

complete (rules)
23. vProgressBarCredits: If Y, show the progress bar for percent

complete (credits)
24. vProgressBarRulesText: Label for the progress bar (rules)
25. vProgressBarCreditsText: Label for the progress bar (credits)

4) DashboardStyles.css – this CSS will be localized using your specific colors and styles.

Here is the general structure of the audit XML. See an actual XML audit for all possible
element types.

<Report>
 <Audit>
 <AuditHeader />
 <Block>
 <Header>
 <Qualifier> </Qualifier>
 <Qualifier> <Text> </Text> </Qualifier>
 <Qualifier> <SubText> </SubText> </Qualifier>
 <Qualifier> </Qualifier>
 </Header>
 <Rule>
 <Classes_applied> </Classes_applied>
 <Credits_applied> </Credits_applied>
 <Requirement>
 <Course />
 <Qualifier />
 </Requirement>
 <Advice>
 </Advice>
 </Rule>
 </Block>

 Degree Works | Technical Guide 5.0.3.1 130

 <Clsinfo>
 <Class>
 <Loc />
 <Loc />
 </Class>
 </Clsinfo>
 <Fallthrough>
 <Class />
 <Class />
 <Class />
 </Fallthrough>
 <OTL>
 <Class />
 <Class />
 <Class />
 </OTL>
 <Insufficient>
 <Class />
 <Class />
 <Class />
 </Insufficient>
 <In_progress>
 <Class />
 <Class />
 <Class />
 </In_progress>
 <FitList>
 <Class />
 <Class />
 <Class />
 </FitList>
 <Deginfo>
 <DegreeData />
 <Custom />
 <Custom />
 <Custom />
 <Report />
 <Report />
 <Report />
 <Goal />
 <Goal />
 <Goal />
 <Goal />
 <Goal />
 <Goal />
 </Deginfo>
 <ExceptionList>
 <Exception />
 <Exception />
 <Exception />
 </ExceptionList>
 <Notes>
 <Note>
 <Text>
 <Text>
 <Text>
 </Note>
 <Note>
 <Text>
 <Text>
 <Text>
 </Note>
 <Note>

 Degree Works | Technical Guide 5.0.3.1 131

 <Text>
 <Text>
 <Text>
 </Note>
 </Notes>
 </Audit>
</Report>

AuditExceptions.xsl

 Degree Works | Technical Guide 5.0.3.1 132

AuditHD.xsl (Do not modify content. It is used by the Ellucian support team.)

 Degree Works | Technical Guide 5.0.3.1 133

AuditTranscript.xsl

 Degree Works | Technical Guide 5.0.3.1 134

DGW_Registration.xsl

 Degree Works | Technical Guide 5.0.3.1 135

DGW_SOC.xsl

 Degree Works | Technical Guide 5.0.3.1 136

DGW_Report.xsl

 Degree Works | Technical Guide 5.0.3.1 137

DGW_Aid_Report.xsl

 Degree Works | Technical Guide 5.0.3.1 138

RADData.xsl

 Degree Works | Technical Guide 5.0.3.1 139

 Localizing the Student Educational Planner

The Student Educational Planner (SEP) interface utilizes a number of XSL stylesheets. Here is
the complete list.

Note: This section provides details for the “classic” Student Educational Planner. For information
about the new-generation SEP, see the Student Educational Planner Administration Guide.

XSL Where it is used
AuditSEP.xsl Student Educational Planner audit report (left frame)
PlanSEP.xsl Student Educational Planner “View Mode”
PlanSEPCompareView.xsl Student Educational Planner “Planned vs. Taken”
SEP_Context.xsl Student Educational Planner context frame (containing plan

name, mode, and Load button)
SEP_Save.xsl Student Educational Planner return status after save attempt

(typically not modified)
SEP_TemplateSearch.xsl Student Educational Planner searching for template (after

clicking on “Load in a pre-defined plan”)
SEP_TemplateSearchResults.xsl Student Educational Planner search results (bottom frame)
TMP_Buttons.xsl SEP Template buttons frame
TMP_Context.xsl SEP Template context frame (containing template search

results, “mode”, and Load button)
TMP_Save.xsl SEP Template return status after save attempt (typically not

modified)
TMP_Search.xsl SEP Template search frame containing picklists for search

criteria

In order to localize SEP you must make modifications to DashboardStyles.css. This is where
color changes are made. To localize content, see the XSL files above.

One exception to the SEP technology is the use of XML Data Islands. When you choose to edit a
SEP plan (the right frame), you are invoking the JavaScript file “DGW_SEPEdit.js.” This
JavaScript code parses through the Plan data, which is XML embedded within the HTML
document itself. Rather than using XSL to render the XML as HTML, the use of XML Data
Islands is more robust. It allows you to parse through the XML and generate more JavaScript,
which is how the SEP Plan form is created.

 Degree Works | Technical Guide 5.0.3.1 140

AuditSEP.xsl

 Degree Works | Technical Guide 5.0.3.1 141

PlanSEP.xsl (used by both Notes Mode and Calendar Mode for the “View” option)

 Degree Works | Technical Guide 5.0.3.1 142

PlanSEPCompareView.xsl

 Degree Works | Technical Guide 5.0.3.1 143

SEP_Context.xsl

 Degree Works | Technical Guide 5.0.3.1 144

SEP_TemplateSearch.xsl (top), SEP_TemplateSearchResults.xsl (bottom)

 Degree Works | Technical Guide 5.0.3.1 145

TMP_Context.xsl

 Degree Works | Technical Guide 5.0.3.1 146

TMP_Buttons.xsl

 Degree Works | Technical Guide 5.0.3.1 147

TMP_Search.xsl

 Degree Works | Technical Guide 5.0.3.1 148

Special Topic: Reintegrating Localizations
It is important to note that you are responsible for reintegrating your localizations when
processing an update to Degree Works. Because they are stored in the database, your
localizations will not be overwritten, but steps should be taken to ensure that you merge your
localizations with the latest version of the record to take advantage of new features and
functionality.

Before the update: Use Controller to set all the localization.*.enable settings to false. This will
ignore any Shepherd Scripts, CSS, XSL, properties and image localizations you have made and
use the baseline versions in all Degree Works applications. This is a good way to test the update
and verify that the applications work without the the layer of complexity localizations can add.
Alternatively, you may set the Enabled flag for your localized records to false, which will direct all
Degree Works applications to use the baseline version instead.

After the update: You will need to integrate all of your localizations with the new baseline
versions delivered in the update. There are several ways to approach this. One option is to copy
and paste your localized record and the baseline record from the Composer editor into an
external tool to “diff” between the two records. Again using copy and paste in the Composer
editor, you may choose to simply add the new lines into your existing localized record, or
overwrite your localized record with the entire new baseline and reapply your localizations.

After reintegrating your localizations, you will need to enable them either by setting all the
localization.*.enable settings to true, or setting the Enabled flag on each localized record to true.

For additional information on how to manage your localizations, please see the Degree Works
Composer Administrative Guide.

Special Topic: Shepherd Scripts
Not all source code in the Degree Works web interface comes from the webapp directory in the
servlet war file. In fact, most comes from Shepherd Scripts, which are stored in the
shp_composer_mst database table. On startup of the web daemons these scripts are unloaded
to the admin/web07 directory. What are they? Shepherd Scripts are HTML and JavaScript code
that contain special commands that are interpreted by the Degree Works software. These
commands are written in a proprietary format. The Degree Works web interface is designed with
the intent that any “look and feel” localization you may require will be made to the web files. The
colors, images, and styles are all configurable in the servlet war file, but much of the content is
controlled in the Shepherd Scripts.

The Composer interface is used to localize and manage Shepherd Scripts. For additional
information on how to localize your scripts, please see the Degree Works Composer
Administrative Guide.

Using UCX-SCR001 Literals in the Web Interface

You may change the Description for some of the UCX-SCR001 items and the labels on the web
will change. These include: Discipline, Number, CatYr, School, Degree, Level, Major, Minor,
Concentration, Status, Conc, Spec, Program, College, Credits, Libl, and ID.

Please see the Responsive Dashboard Administration Guide for configuring the Responsive
Dashboard; it does not use UCX-SCR001.

 Degree Works | Technical Guide 5.0.3.1 149

(For Banner schools some of them are appropriately on installation.)

Examples of how these literals are used in the web interface follow:

STUDENT CONTEXT AREA
The Student Context area uses the Student ID, Degree, Major School, and level literals from
UCX-SCR001.

For Banner we should see “Level” instead of “School” and “Class Standing” instead of “Level”

 Degree Works | Technical Guide 5.0.3.1 150

WHAT-IF page:
All literals should come from UCX-SCR001.

For Banner we should see Level instead of School and Academic Year instead of Catalog Year
and

Subject instead of Discipline

Test: plug in a discipline but don’t type in a number – click Add Course – the error message
should use the discipline and number literals from UCX-SCR001 that match the screen

 Degree Works | Technical Guide 5.0.3.1 151

LOOK AHEAD page
Same test as on what-if; discipline/number should be subject/number for Banner.

 Degree Works | Technical Guide 5.0.3.1 152

Worksheets:
The student header section in the worksheets is not driven from UCX-SCR001 but is driven from
new variables at the top of the xsl. This allows for easy localization.

The Catalog Year label does come from UCX-SCR001 however as does the Credits label.

 Degree Works | Technical Guide 5.0.3.1 153

Search Page
All labels here (except for First, Last Name) come from UCX-SCR001

For Banner we are using Level (not School), Student Type (not Status) and Class Standing (not
Level)

 Degree Works | Technical Guide 5.0.3.1 154

Single Custom Search Item
You may add an additional search item to the Find Students page to search on data bridged to
the rad-custom-dtl. Not only can you search on this item but the data value for each student can
also appear in the student context area.

Here we see that a Campus selection item has been added to the Find window. (In this example
we have also suppressed the displaying of the Liberal Learning field.) We are using “Campus” in
this example but it can be any piece of data associated with the student bridged to the rad-
custom-dtl.

Label comes from
UCX-SCR001
CUSTOM

Values come from
UCX-STU100

 Degree Works | Technical Guide 5.0.3.1 155

We also see the custom data value of Campus appearing in the student context area.

This same campus value can be added to the student header of the worksheets by modifications
to the worksheet xsl files.

To have this new search field appear on the Find Students window and to have this field
displayed in the student context area of the main window set the UCX-CFG020 SEARCH “Show
Custom” field to Y. Set the “Custom Code” field to the value in the rad-custom-dtl rad-custom-
code field – this is the record on which the search will be performed and also will be the record
that is retrieved when all student information is retrieved regardless of how the search is
performed (searching by ‘level’, ‘major’, or similar criteria).

Note that the custom code needs to be an overall value associated with the student and not tied
to the student’s degree. For this reason using something like the Degree Status may not be
appropriate because the student may have multiple simultaneous degrees. It is assumed that
each student only has one of these rad-custom-dtl records – having multiple records with this rad-
custom-code will give you interesting results.

The UCX-STU100 table must also be populated to indicate what values will appear in the drop-
down list on the Find Students window. The key into each record must be the values found in the
rad-custom-dtl on the rad-custom-value field for your students. The Description for each record is
the display value that will appear in the drop-down list for each key.

Values come
from rad-
custom-dtl rad-

 Degree Works | Technical Guide 5.0.3.1 156

To get the label on the Find Students and the student context area to describe the type of data
you are searching on or displaying you need to modify UCX-SCR001 – change the CUSTOM
entry to have whatever label you want. Here we have changed it to “Campus” to get the
appropriate label to display.

 Degree Works | Technical Guide 5.0.3.1 157

To get the ID search to work from the main page you must change the UCX-SYS933
SDCUSTOMCODE entry to contain the same value you entered in UCX-CFG020 SEARCH
“Custom code”.

Using the example of campus following the examples above Banner sites can use entries like this
in UCX-BAN080 to get the campus code from Banner pulled into Degree Works. Non-Banner
sites can use the normal custom bridge record to push any custom values desired into the rad-
custom-dtl.

BAN080CAMPUS:COLUMN SGBSTDN_CAMP_CODE
BAN080CAMPUS:ORDERBY SGBSTDN_TERM_CODE_EFF
BAN080CAMPUS:TABLE SGBSTDN a
BAN080CAMPUS:WHERE_1 a.SGBSTDN_TERM_CODE_EFF =
BAN080CAMPUS:WHERE_2 (SELECT MAX(b.SGBSTDN_TERM_CODE_EFF)
BAN080CAMPUS:WHERE_3 FROM SGBSTDN b
BAN080CAMPUS:WHERE_4 WHERE b.SGBSTDN_PIDM =
a.SGBSTDN_PIDM)

As always, remember to issue a webrestart after making any UCX changes.

Additional Custom Search Items
You may add additional search items to the search page as shown below. These search items
allow users to search on the other student data stored on the rad_custom_dtl. In the example
below, a select box was added to search on SPORT, another to search on ACADSTANDING and
another to search on ATTRIBUTE – all searching on the rad_custom_dtl.
Ellucian delivers a SEARCHCUSTOM shepherd script. You should modify it as needed. Make
sure each <select> object has an “id” attribute that contains “Custom” in its value – for example:
 id="idCustom4"
This tells the search page that you are searching on the rad_custom_dtl.
If you want to allow your users to select multiple values from the same select box you should use

Must match UCX-CFG020
SEARCH Custom Code

 Degree Works | Technical Guide 5.0.3.1 158

this onChange event:
 onChange="AddSearchItem(this);"

For example, if you setup an Attribute select box you may want to allow users to select on
students who have both the HONR attribute as well as the FRGN attribute. Using this onChange
event places the values into the collection box that is then processed when the user clicks
Search. When this onChange is not used the user is limited to only one value from the select box.
If you need to resize your window because of the number of extra select boxes you added you
need to modify the search window height and width values in DGW_Control.js

var iSearchWidth = 850;
var iSearchHeight = 690;

You may also need to adjust the height of the top section of this window set in SD2SEARCH also.
<frameset rows="440,*,40,0<$ILENV-DWHOLDHEIGHT>"

For details on localizing Transfer Equivalency Self-Service, see the Transfer Equivalency Self-
Service Administration Guide.

 Degree Works | Technical Guide 5.0.3.1 159

What-if Configuration
The What-if page can operate on one of two modes:

Mode 1) Classic mode. The curriculum rules are not followed. The only filtering is by
degree/major based on the UCX-CFG020 WHATIF Degree Drives Major and Major Drives
Degree flags. The SD2WIFBODY shpscript is used in this mode.

Mode 2) Curriculum Rules mode. In this mode the rules stored on the rad_CurrRule_dtl are
obeyed by the what-if page. The SD2WIFBODYCURR shpscript (in conjuction with
SD2WIFBODYCURRMAJORS) is used in this mode with the controlling logic located in the
CurrRules.xsl stylesheet. In this mode the two “Drives” flags mentioned above are ignored.
To operate in Curriculum Rules mode set the UCX-CFG020 Obey Curriculum Rules flag to “Y”.

Curriculum Rules mode details
Multiple scenarios are supported under the curriculum rules mode. These scenarios are directly
related to how faculty and students understand the rules you have built for your institution. In
every scenario the catalog year is used as the first item to select a set of rules. Some curriculum
rules may have been discontinued and therefore should not appear on the what-if page. In
addition to the catalog year the user must then either choose a program or a combination of
school, degree and college. Campus can also be included under either of those scenarios to
further filter the list of rules.

Here are the scenarios mode 2 supports:
Scenario A: school-degree-college; degree is chosen before the college

Catalog Year
School
Degree
College

Scenario B: school-college-degree; college is chosen before the degree
Catalog Year
School
College
Degree

Scenario C: school-degree; college is not used for selecting rules
Catalog Year
School
Degree

Scenario D: community college – no school; school on student’s academic record is used
Catalog Year
Degree

Scenario E: multi-campus institution type of school; campus used in selection
Catalog Year
Campus
School
Degree
College

 Degree Works | Technical Guide 5.0.3.1 160

Concentrations tied to Majors
Under each scenario concentrations can either be tied to majors or to the overall rule. In the first
case the what-if page waits until the major is selected to populate the list of concentrations
allowed. The what-if page knows to tie concentrations to majors based on the UCX-CFG020
WHATIF Conc Tied To Major flag.

Majors requiring Concentrations
For majors that require a concentration you can set the UCX-AUD027 Conc Required flag. In the
major picklists on the what-if page the user will see an indicator next to the major description for
these majors requiring a concentration. In the CurrRules.xsl stylesheet there is a
vMajorRequiresConcIndicator setting that allows you to change the asterisk to some other
character or text or to nothing at all. When the user attempts to click Add in the additional areas
section the page will tell the user that a concentration must be selected for the major chosen.
Similarly, when the user attempts to run the what-if audit an alert will tell the user about the
missing concentration on the primary major.

One Major per Rule
For curriculum rules that have exactly one major the what-if page pre-selects the major in both
the primary and in the additional major picklists. If the user is selecting the program in the primary
area the associated major will be chosen automatically with little else for the user to do. If the
user is selecting the school, degree and college then the major will be chosen as soon as all
three are selected and the user has clicked the “Show related areas of study” button.

Auto-selecting picklists
Much like with the situation of one major per rule the other primary picklists are automatically
selected when there is only one option available. For example, if a school is chosen that only
offers one degree that degree will be auto-selected.

Disabling empty picklists
Conversely to the auto-selecting feature some picklists are disabled if they contain no entries. For
example, when a curriculum rule is chosen and no minors are found the minor picklist will be
disabled to communicate this fact to the user.

Program driving curriculum rule
There are two ways to choose a curriculum rule. One option is to select the program. In doing this
the what-if page uses the program to determine the school, degree and college tied to it on the
curriculum rule and populates those picklists. These picklists are disabled but are visible. The
other option is to not use the program but to instead have the user select the school, degree and
college to select the curriculum rule.

Program as Degree
When the UCX-CFG020 BANNER Program As Degree flag is set to Y, the Banner extract for the
curriculum rules will swap the program and degree values on all records passed to Degree
Works. When you have Program-as-Degree enabled, you need to make sure you have UCX-
CFG020 WHATIF Program On Curr Rule set to N. This will allow the user to choose the Degree

 Degree Works | Technical Guide 5.0.3.1 161

(which is really the program code) to drive the curriculum rule. In addition, the UCX-CFG020
WHATIF Degree College Hierarchy flag must be set to D.

Degree drives College
When school, degree and college are being used to select the rule you have the option of either
having the user first select the degree and then the college or the other way around. When the
degree is chosen first the college picklist is populated with the valid colleges found on the
curriculum rules for the given catalog year, school and degree. The same happens if the college
instead drives the degree: the degree picklist is populated with the valid degrees found on the
curriculum rules for the given catalog year, school and college.

Additional areas of study
You have the option of restricting the user to choose the additional areas of study (second major,
minor or concentration for example) from the primary curriculum rule or you can allow the user to
choose the additional areas from a different curriculum rule. When the user is restricting to
selecting the areas from the primary rule the contents of the major, minor and concentration
picklists in the additional areas mirror those shown in the primary area of the page. When the
user is free to choose areas from a different curriculum rule the user is shown either a program
picklist or a degree and college picklist so that the new curriculum rule can be chosen. Once the
rule has been chosen the major, minor and concentration picklists are populated based on what
is found for the specified rule.

Course Link
Degree Works has the ability to allow users to click on courses listed in the advice to see a
description of the course. The description may contain a configurable listing of course content,
pre-requisites, course name changes, etc. The UCX-RPT036 CreateCourse Link flag enables or
disables this feature by worksheet, by user role.

When the user places the mouse over a course the course becomes underlined indicating that it
may be clicked. For example, “GEOL 1041” becomes “GEOL 1041” when the mouse is placed
over it. After clicking the hyperlink, a sample (using the Standard configuration settings) of the
display returned is as follows:

 Degree Works | Technical Guide 5.0.3.1 162

One of Course Link’s responsibilities is to retrieve information and display it in a customer-defined
format, using XML-based technology. To achieve a maintainable format, Course Link will depend
upon a combination of “configuration” tables and “customer localization” of the XSL and/or XML
sheets.

New settings have been established that allow each audit worksheet to define what a Course Link
information window will contain in terms of the pre-defined groupings outlined below. The actual
content of each of these groups is fixed from our point of view, but could be localized by the
customer to meet their particular needs.

For example, a customer can define via the configuration table that the window should show the
TITLE, the ATTRIBUTE, and the TRANSFER groups – in that order. Further, the TRANSFER
group should be displaying the “BRIEF” version, not the “STANDARD” or “VERBOSE” version of
the text.

It is important to consider the role of the “framework” within which that information is displayed.
The window should have the capability of displaying the information defined by the groups for a
single course, as well as a collection of courses selected by list, in a logical and consistent
manner. Any “print button” relates to the framework, that is, the window, and not to an individual
group.

In summary, the customer can use the configuration table to say – for each worksheet -

Which information group
What order
Which version of the group (BRIEF, STANDARD, VERBOSE)

without any localization being required. If the customer does not like the actual arrangement of
the information within the group, they take the responsibility for “localizing” the content.
The following text gives a brief overview of each of the information groups.

Configuration Options

TITLE – (UCX-RPT050)
The BRIEF version would include only the course key and title, while the STANDARD/VERBOSE
versions would have the course key, title, and credits.

Brief

Standard

Verbose

 Degree Works | Technical Guide 5.0.3.1 163

 ATTRIBUTE – (UCX-RPT052)
For this group, BRIEF/STANDARD will be just the code, while VERBOSE will be the code and a
label.

Brief

Standard

Verbose

 Degree Works | Technical Guide 5.0.3.1 164

SECTIONS – (UCX-RPT054)
For the course sections, it checks for a start date newer than two weeks ago. This means the
most current term will appear if it started within the last two weeks - and all future terms will
appear also. This logic may be altered by doing the following: Change the UCX-
CFG020COURSELINK TERM_DAYS_OLD or START_TERM to overwrite "2 week logic". Set
the START_TERM to be the first term that should appear; or change the TERM_DAYS_OLD to
be more or less than 14 days of the 2-week logic.

The SECTIONS group displays the same format for Brief, Standard and Verbose:

 Degree Works | Technical Guide 5.0.3.1 165

TRANSFER – (UCX-RPT056)
The Transfer Equivalency product maintains a library of course mappings for articulation between
the institution and feeder schools from which students transfer, or attend classes not offered by
the institution. The basic Transfer (often referenced as Course Finder) functionality is a feature of
the Transfer Equivalency Self-Service component of Transfer Equivalency, and will be accessible
through Course Link as an information group if the customer has a license for Transfer
Equivalency.

Brief

Standard

Verbose

 Degree Works | Technical Guide 5.0.3.1 166

Showing Title/Credits as Hint
The standard Degree Works worksheets show the title and credits for each course in the advice
as a HTML hint. The hint appears when the user places the mouse over a course in the advice.
In addition, in the planner the hint appears on the edit boxes for each course – placing the mouse
over an edit box will show the hint containing the course title and credits. When a course is
dragged from the worksheet into the planner the title and credits are brought over also. However,
if a user types in the course by hand the title and credits will not appear – though saving and
reloading the plan will make them appear.

The title and credits to not appear for courses in rules containing a wildcard or a range.

This hint appeared when the mouse was placed over the ART 2200 course:

Here we clicked on ART 2200 in the worksheet and dragged it into the plan. The title is brought
over as a hint and the credits are brought over into the credits field (Internet Explorer only). When
a saved plan is redisplayed, the title and credits for all courses appear as hints.

 Degree Works | Technical Guide 5.0.3.1 167

Install Notes
You do not have to have the UCX-CFG020 DAP13 ValidateCourses=Y – we will still lookup each
course on the course-mst even if this flag is turned off. However, when this flag is Y we will give
an error if the course is not found. This is to allow sites who do not have all of their courses
recorded in the course-mst to still use this feature.

You do need to reparse all of your blocks however – run DAP16.

Once all blocks have been parsed you need to rerun new audits so that he audit tree contains this
new title/credits information for each course.

If you wish to turn off this feature you can set the vShowTitleCreditsInHint to N at top of each
XSL.

Financial Aid Audits
The Aid tab appears for anyone with the SDAIDAUD key assigned to them. On the Aid tab the
user may view the most recent audit, view an historic audit or run a new Financial Aid audit.

The Include In-progress classes and Include preregistered classes checkboxes are disabled and
only the former is checked. For Financial Aid purposes it is necessary to include the student’s
current class load while ignoring those classes set in future registration periods. However, you
may localize the SD2AIDCON shpscript to alter show this behaves as you wish.

The DGW_Aid_Report.xsl controls the content of the report. A student header with only a select
set of data values is shown – but more can be added as needed. In addition, certain term and
credit information is also displayed just below the student header – this too can be changed as
needed for your audience.

The “Financial Aid Awards” section shows all of the AWARD values found in the rad-aid-dtl table
for this student. The XSL allows you to map each of the awards you offer to a nice looking
description.

This report shows only the AWARD blocks and suppresses the DEGREE, MAJOR, etc blocks
from showing on the report. These other blocks are available for display as all of the normal
degree audit information is in the XML being used but by default only the AWARD blocks appear.

 Degree Works | Technical Guide 5.0.3.1 168

This report assumes that each header qualifier in the AWARD block contains a Label and thus is
able to show each qualifier as if it were a normal rule.

Exception Management
The Degree Advisory Processor requires strong exception handling. Although it is possible to
create custom requirements for a student through Scribe, doing so for every student that needs
an exception to the rules is not tenable. Minor adjustments for a student can be recorded in
Degree Works through Degree Works on the Web's Exception Management. These adjustments
are called Degree Works exceptions. They are used to alter the results of a student's audit when
the student's coursework varies slightly from the normally expected pattern. A Degree Works
exception is a way of "bending the rules", not writing new or different rules. If a particular student
needs more than a bend in the rules, then use Scribe to write a custom requirement block for that
student.

A Degree Works exception can be categorized as one of these types: force-complete,
substitute, also allow, apply here, remove course, and change-the-limit. These exception
types are designed to handle specific situations that are commonly encountered when doing
degree audits. Each exception type has a specific effect on the audit results derived by the
Auditor Engine.

In Degree Works Exception Management, an exception is made for a particular
student/school/degree combination for a specific requirement. Each exception is assigned one of
the exception types defined below. The scope of the exception can be a course, noncourse, rule,
rule qualifier, block or block qualifier. Each exception type is limited in scope and can be used
only in certain places within requirements.

 Degree Works | Technical Guide 5.0.3.1 169

Use of Labels
The modification of rules within the same block will not unhook the exception from the rule.
Modification of the rule on which the exception was placed will, in most cases, also not cause the
exception to become unhooked. When exceptions are placed on a rule Degree Works uses the
label-tag or label as an identifier. As long as the label-tag or label is not changed Degree Works
should always find the rule on which the exception was placed. It is best to have label-tags on all
of your rules to ensure exceptions will not become unhooked. If the Allow Duplicate Labels flag in
UCX-CFG020, DAP13 is N, Scribe will not allow duplicate labels to be Scribed in the same block.
However, if you use label-tags on your labels you can set that UCX-CFG020 DAP13 flag to Y to
allow duplicate labels as Degree Works will use the label-tags and not the label text to ensure
exceptions are placed on the correct rules. See the Label Tags section in the Scribe User Guide
for more information.

Example:
A Force Complete exception is placed on the Humanities Requirement:

9 Credits in SPAN 1@, FREN 1@, ITAL 1@
 Label “Language Requirement”;
6 Credits in ANTH @, HIST @, SOC @
 Label “Humanities Requirement”;
3 Credits in MATH 112, PHIL 118
 Label “Logic Requirement”;

The block is changed as follows:

9 Credits in SPAN 1@, FREN 1@, ITAL 1@, IRISH @
 Label “Language Requirement”;
3 Credits in MATH 112, PHIL 118
 Label “Logic Requirement”;
8 Credits or 2 Classes in ARTH @, ANTH @, HIST @, SOC @
 Label “Humanities Requirement”;

Since Degree Works uses the label to locate the exception location the Force Complete
exception will be applied and will not become unhooked even though the rules around the
Humanities Requirement have changed and even though the requirement itself has changed.

Substitute and Remove Course exceptions may not be applied to a changed rule if the course
being substituted or removed cannot be found.

 Degree Works | Technical Guide 5.0.3.1 170

Exception Types
The Exception Type is a code that is assigned to each Degree Works exception. It indicates
which kind of exception is being made. The Auditor Engine is programmed to take certain actions
based on the Exception Type. UCX-AUD014 is used to validate the Exception Type code.

When deciding what type of exception to make in a given situation, it is important to consider the
reason for the exception. If the student has taken a course that is similar to the one required, but
does not plan to take the required course, then a Substitution is probably in order. If the student
has taken all the coursework, but cannot achieve the required minimum number of courses in
residence, then a Force-Complete of the MINRES qualifier may be made. If the Auditor does not
apply a course in the "best" place then use a Lock-In to force the Auditor to do what is desired. If
the student has job experience in finance, and forcing the student to take the core finance
courses is undesirable, then Waive the finance requirement. If the student has taken too many
transfer courses, and the MAXTRANSFER limit is exceeded, then use a Change-the-Limit
exception to raise the MAXTRANSFER limit.

It is also important to consider the magnitude of the exception. Remember that it is possible to
create a custom requirements block in Scribe for a student. If many exceptions are being made
for a student, then consider a custom requirements block for that student ID.

ALSO ALLOW
Exception Type = "AA"

Definition: Also Allow is used when a course rule needs to allow more choices. Typically, an
advisor decides to let the student use a non-standard course to satisfy a requirement. Therefore,
Also Allow exceptions are typically made after the student has already taken the course but this is
not a required condition. For example, a student took MATH 210 but a requirement is “5
CREDITS IN MATH 311, 312”. In order to allow the student to graduate on time the advisor
wants to allow MATH 210 as a choice on the rule. Using Also Allow the new rule would be “5
CREDITS IN MATH 311, 312, 210”.

Also Allow can only be made on a course list in a rule, not for a course in a list associated with a
qualifier. The course rule must be separated by commas (OR); a plus (AND) separated list is not
allowed.

Auditor: If the student takes a course that is applied to the specific course specified in the Also
Allow exception then the auditor attempts to apply the course to the requirement. If the course
fits on another rule or the course causes a maximum to be exceeded then the course may be
removed from the rule; the class is not locked in to the rule. If the student does not take a course
specified by the exception then the auditor ignores the exception other than showing it in the
advice.

APPLY HERE
Exception Type = "AH"

Definition: Apply Here is used when a course should be applied to a specific course rule.
Typically, an advisor decides to let the student use a non-standard course to satisfy a

 Degree Works | Technical Guide 5.0.3.1 171

requirement. Therefore, Apply Here exceptions are typically made after the student has already
taken the course but this is not a required condition. For example, a student took MATH 210 but a
requirement is “5 CREDITS IN MATH 311, 312”. In order to allow the student to graduate on time
the advisor wants to apply MATH 210 to the rule. Using Apply Here the new rule would be treated
as “5 CREDITS IN MATH 311, 312, 210” and MATH 210 would be applied to the rule.

Apply Here can only be made on a course list in a rule, not for a course in a list associated with a
qualifier. The course rule must be separated by commas (OR); a plus (AND) separated list is not
allowed.

Auditor: If the student takes a course that is applied to the specific course specified in the Apply
Here exception then the auditor attempts to apply the course to the requirement. Even if the
course fits on another rule or the course causes a maximum to be exceeded the course will not
be removed from the rule; the class is locked in to the rule. The fact that the course is locked in to
the rule is the key distinguishing factor with regard to the Also Allow exception. If the student does
not take a course specified by the exception then the auditor ignores the exception other than
showing it in the advice.

REPLACE REQUIREMENT (Substitution)
Exception Type = "RR"

Definition: Replace one course with another. Course A is replaced by Course B, where Course A
is the requirement and Course B is the replacement requirement. Typically, a student has already
taken Course B and the advisor decides to let the student use Course B instead of Course A to
satisfy a requirement. Therefore, Replace Requirement exceptions are typically made after the
student has already taken Course B. For example, a senior took MATH 310 in his final semester
because MATH 305 wasn't offered. In this case, make an exception that replaces MATH 310 with
MATH 305.

A substitution can only be made at the rule or block level. The rule may be a subset, group or a
simple course rule. A course is replaced anywhere that it is found within the group, subset or
course rule. If the exception is on an entire block then the course is replaced anywhere that it is
found in the block header or in any of the rules. Wildcards and ranges can be used in a Replace
Requirement. This exception, unlike the Substitution exception, replaces courses in the EXCEPT
and INCLUDING lists on a course rule.

Auditor: The Auditor replaces Course B with Course A anywhere that it is found in the rule or
block. There is no assumption as to whether the student took Course B. An exact match must
be made for the replacement to take place: If a rule is specified as “3 credits in ENGL 112:115”,
an attempt to replace ENGL 113 with another course on this rule will fail.

NOT NEEDED (Remove course)
Exception Type = "NN"

Definition: Remove a course from a rule’s course list or change the number of required classes or
credits on a course rule. Typically, a course is waived and the rule where the course is required
needs to be changed to remove the course from the list so that it does not show up in the advice.
The number of classes or credits on the rule may also need to be changed to allow the rule to be
completed without this course being applied. This exception supports removing a course or
changing the classes/credits or both.

 Degree Works | Technical Guide 5.0.3.1 172

This exception can only be made at the rule level. If a course is simply being removed the rule
may be a subset, group or a simple course rule. If the number of classes/credits is being
changed the rule must be a course rule.

A course is removed anywhere that it is found within the group, subset or course rule. Courses in
the EXCEPT and INCLUDING lists on a course rule are also removed.
Auditor: The Auditor replaces Course B with Course A anywhere that it is found in the rule or
block. There is no assumption as to whether the student took Course B. An exact match must
be made for the replacement to take place: If a rule is specified as “3 credits in ENGL 112:115”,
an attempt to replace ENGL 113 with another course on this rule will fail.

This exception is used with Web Degree Works.

FORCE COMPLETION
Exception Type = "FC"

Definition: Force this rule, rule qualifier, or block qualifier to be complete. Force-Complete does
not change the requirement -- it completes a requirement that the Auditor Engine would otherwise
mark as incomplete. Typically, Force-Complete exceptions are made immediately prior to
graduation when a student cannot possibly meet the requirement in time to graduate.

For example, the requirement for a minimum of 36 credits in residence (MINRES 36 CREDITS)
cannot be completed because the student has only taken 33 credits in residence and extenuating
circumstances prevent the student from taking an additional 3 credits. In cases like this, which
usually involve MIN qualifiers, use the Force-Complete exception to indicate that you want to let
the student slide.

Force-Complete exceptions are not for a specific course. Most frequently they are used for block
or rule qualifiers, but can also be used to complete a course or noncourse rule. This type of
exception occurs with: CLASSES, CREDITS, LASTRES, MINCLASS, MINCREDITS, MINGPA,
MINPERDISC, MINRES, MINSPREAD, MINTERM, and NONCOURSE.

Note: Force-complete behaves like a de facto change-the-limit exception, where the limit is not
specified as part of the exception but is assumed to be whatever limit the student can meet. For
example, if the student has a GPA of 1.985 and the requirement is MINGPA 2.0, then a force-
complete exception has the same effect as changing MINGPA to 1.985 with a change-the-limit
exception.

Auditor: The Auditor will follow its standard algorithm for applying courses to requirements.
However, when the Auditor checks if the rule qualifier, block qualifier, or rule is complete, it marks
this requirement as complete. Even though the Auditor would normally treat the requirement as
unsatisfied, that will not happen if the requirement has a force-complete exception.

The Force-Complete occurs at the node level. If a rule or qualifier is forced complete then the
exception is made on a specific node.

 Degree Works | Technical Guide 5.0.3.1 173

REMOVE COURSE & CHANGE THE LIMIT
Exception Type = "NN"

Definition: Replace the number of classes, credits, noncourses, etc. associated with a minimum
or maximum in a requirement with a new number. Like Force-Complete, this type of exception
typically is made immediately prior to graduation when a student cannot possibly meet the
requirement in time to graduate. For example, the requirement for a maximum of 24 transfer
credits could be changed to 30 credits for a student. Unlike the other exception types, Change-
the-limit changes the limit associated with the requirement so the student is audited with the
replacement limit.

Change-the-Limit exceptions are not for a specific course. Most frequently they are used for
block or rule qualifiers, but can also be used to change the number of classes, credits,
blocktypes, groups, and noncourses in a rule. This type of exception occurs with: CLASSES,
CREDITS, LASTRES, MINCLASS, MINCREDITS, MINGPA, MINGRADE, MINPERDISC,
MINRES, MINSPREAD, MINTERM, MAXCLASS, MAXCREDITS, MAXPASSFAIL,
MAXPERDISC, MAXRES, MAXSPREAD, MAXTERM, MAXTRANSFER, NONEXCLUSIVE,
EXCLUSIVE, BLOCKTYPE, GROUP, and NONCOURSE.

The new limit cannot be zero unless zero is used as the lower limit of a range of classes/credits
(e.g. 0:2 CLASSES). Disallowing zero avoids unpredictable behavior of the Auditor and keeps
the requirements in synch with what the Parser allows. Use Force-Complete instead of Change-
the-Limit in situations where zero is the desired limit, or create a custom requirement block for the
student that does not include the requirement at all.

Auditor: The Auditor will follow its standard algorithm for applying courses to requirements.
However, the limit (number) associated with the keyword in the exception, will be replaced by the
new limit.

Change-the-Limit occurs at the node level. The limit associated with a specific node is changed.

 Degree Works | Technical Guide 5.0.3.1 174

Cascading Exceptions
When making exceptions, it is possible for there to be a domino effect of cascading exceptions.
This situation arises when one exception is the catalyst for a second exception, which is the
catalyst for a third, etc. For example:

BEGIN
 10 CLASSES
 MINGPA 2.0
 MINCLASSES 2 IN (SOC);
4 CLASSES IN SOC@, PSY@, POL@; #rule 1
3 CLASSES IN MATH115 + 116 + 117; #rule 2
3 CLASSES IN BIO 1@, CHE 1@, PHY 1@ MINGPA 2.0; #rule 3

Exceptions made:

1. Change the Limit from MINGPA 2.0 to MINGPA 1.5 in rule 3.

 Cascade: The block header MINGPA of 2.0 needs a change the limit
 exception if the block GPA is pulled below 2.0 for this
 student.

2. Substitute SOST@ for SOC@ in rule 1.

 Cascade: MINCLASSES 2 IN (SOC) is impossible to fill so an
 exception that forces it complete is needed

 Degree Works | Technical Guide 5.0.3.1 175

Degree Works Accessibility Compliance (Section 508,
ADA and WCAG)
Degree Works has two broad types of user interfaces:
One provides functionality which is used only by "back office" staff for building degree
requirements, updating validation tables, and launching batch processes. These are referenced
as "Administrative applications".
The other provides functionality which is used by the majority of end-users for access to audits,
advice, planning, and reporting. These are referenced as "End User applications".

As each user interface is modernized and rewritten, it follows WCAG 2.0 AA guidelines for accessibility.
Ellucian has completed a Voluntary Product Accessibility Template (VPAT) for each End User application
to better specify the level of compliance in the product.

Web Server Components
For information about the Web Server and its components, refer to the Degree Works Installation
Guide.

Other Configuration Options

Leepfrog
To use Leepfrog’s CourseLeaf tools with Degree Works, you must first license this product from
Leepfrog Technologies, Inc.

For information on Leepfrog’s product line visit Hhttp://courseleaf.com/

Degree Works integrates with Leepfrog’s products in the following ways:

CourseLeaf
Get course information from CourseLeaf.

1. Leepfrog asks Degree Works for a student’s class history and planned classes.
CourseLeaf creates degree catalog showing what the student has already completed and
is planning to take.

2. When a user clicks on a class in the worksheet advice Degree Works sends a request to
CourseLeaf to get back a course description.

To enable this link in the Degree Works worksheets create an LF_COURSELEAFURL record in
UCX-CFG020 with the URL pointing to the location where your course information resides on the
Leepfrog server. The vGetCourseInfoFromServer flag in DGW_Report.xsl also has to be set to
“Y”.

http://courseleaf.com/

 Degree Works | Technical Guide 5.0.3.1 176

When the 22C 019 course, for example, is clicked in the worksheet advice a window like this will
appear to the user.

 Degree Works | Technical Guide 5.0.3.1 177

u.select from redLantern
To use redLantern’s u.select tool with Degree Works you must first license this product from
redLantern. For information on redLantern’s product line visit http://redLanternu.com

Degree Works support of u.select Articulation/Audit request
The redLantern u.select product sends to Degree Works a request to perform an articulation and
degree audit for the given transfer information. Degree Works first performs an articulation
against the mappings that exist in the Degree Works database and then uses the intended
degree/major information passed in along with the articulation results to perform a degree audit.
The results of the articulation and the audit are passed back to u.select as an XML tree for
processing.
You must have your mappings stored in Degree Works in the dap-mapping-dtl. You can create
them using Transfer Equivalency, bridge them from Banner or import them from another source.
However, you do not need to license Transfer Equivalency from Ellucian – you must ensure you
have your mappings built and your transfer schools listed in the rad-ets-mst.

http://redlanternu.com/

 Degree Works | Technical Guide 5.0.3.1 178

Database Tables

Introduction
The next section gives a list of all database tables used within Degree Works.

dap Tables
Table Description
dap_appdata_dtl This table stores additional goal data for applicants processed in Transfer

Equivalency.
dap_applicnt_mst This table stores information on applicants processed in Transfer Equivalency.
dap_audit_dtl This table contains the description of an audit. Each degree audit that is

performed, other than What-If, has an entry. There is one dap_audit_dtl for each
dap_audit_id. Audit results that may need to be used as selection criteria are
stored here.

dap_audtree_dtl This table stores the steno audit trees created by the Auditor Engine. Each entry
is one line of an audit tree. The audit tree is binary data.

dap_college_dtl This table stores information about transfer schools for applicants processed in
Transfer Equivalency.

dap_eqv_crs_mst This table tracks course equivalence through history across catalog years. As
course numbers change or are reused, entries in this table map from the course
the student took to the course for a specific catalog year. The key is a
concatenated list of catalog year of student course plus discipline and number of
student course plus catalog year being evaluated. For example, "1990 MATH
301 1995 " maps to "MATH 310 ", i.e. MATH 301 taken in the
1990 catalog year is equivalent to MATH 310 in the 1995 catalog year.

dap_except_dtl This table records manual overrides to the Auditor engine. Sample exceptions
are waivers, substitutions, or lock-ins. There is one dap_except_dtl per exception,
with a maximum of 9,999 exceptions per student/school/degree combination.
Each exception is tied to a particular requirement in a requirements block. This
table links the requirement to the exception and the exception to the student.

dap_gpa_history This table stores overall and major GPA information by term from the student’s
audit. Used in the Tracking component of the new generation SEP.

dap_map_attr_dtl This table stores the attributes related to the mappings in the dap_mapping_dtl.
dap_map_cond_dtl This table stores the conditions related to the mappings in the dap_mapping_dtl.
dap_mapping_dtl This table stores the mappings created in Transfer Equivalency.
dap_next_id_mst This table contains the next available ID for Mappings, Requirement blocks and

Audits. dap_next_key is “M” for mappings, "R" for requirements and "A" for
audits. dap_next_id is of the form “Mxnnnnnn” for mappings, "Rxnnnnnn" for
requirements and "Axnnnnnn" for audits. "x" is a letter, A-Z. "nnnnnn" is a
number, sequentially assigned from 000001 to 999999. When 999999 is reached
the "x" value is changed to the next letter. There is a maximum of 26 million
requirement blocks or degree audits.

dap_note_dtl This table contains the header information about a Degree Works note. It
contains global information about a note for a student, such as note-status and
note-type. There is one dap_note_dtl per student per note.

 Degree Works | Technical Guide 5.0.3.1 179

Table Description
dap_note_txt_dtl This table contains the text of a Degree Works note. Each entry contains one

line of text per note. Sorting on note_num and note_seq displays the text of the
note in order.

dap_plancrs_dtl This table stores term and class information for student plans in classic SEP.
dap_planner_dtl This table stores student planner information: degree/school, plan-id, etc. in

classic SEP.
dap_plannote_dtl This table stores notes about a student’s plan in classic SEP.
dap_pt_crs_dtl This table stores class information for the plan template in classic SEP.
dap_pt_note_dtl This table stores notes for the plan template in classic SEP.
dap_req_block This table describes a block of requirements. It associates a requirements ID with

the database tags (Catalog Year, Degree, etc.) for the block.
dap_req_crs_dtl This tables houses the courses referenced in each of the requirement blocks.

This table allows you to easily find out the blocks in which a course is referenced
– for maintenance purposes.

dap_req_link_dtl This table points to other blocks that were referenced in the requirements text
using the BLOCK keyword. Degree Works uses this to know when a change to
one block may affect another block and to ensure that a block is not circular
(block A links to block B which links back to block A).

dap_resclass_dtl This table stores class information used in an audit to be used by CPA.
dap_resnoncr_dtl This table stores noncourse information used in an audit to be used by CPA.
dap_result_dtl This table stores audit information to be used by CPA.
dap_student_mst This table tracks the most recent activity for a student. An entry is created for

each student who is audited or has exceptions or notes. There is one entry per
student. This table also tracks whether or not the student is locked for
processing.

dap_template_mst This table stores information about a plan to be used by a set of students – a plan
template in classic SEP.

dap_title_dtl This table stores the titles of transfer courses entered in Transfer Equivalency.
dap_transfer_dtl This table stores transfer and advanced placement exam information for Transfer

Equivalency.
dap_undecide_dtl This table stores information about unresolved articulation results.

rad Tables
Table Description
rad_aid_dtl Stores financial aid data to be used in the Financial Aid audit worksheet.
rad_aid_hsh Stores hash value for the aid_dtl data
rad_applicnt_dtl Transfer Equivalency application data
rad_applicnt_hsh Stores hash value for the applicnt_dtl data
rad_attr_dtl Stores attributes about each class the student has taken – transfer_dtl and

class_dtl
rad_attr_hsh Stores hash value for the attr_dtl data
rad_class_dtl Stores in-residence classes taken – historic and in-progress
rad_class_hsh Stores hash for the class_dtl data
rad_course_mst Stores courses offered by the institution: title, credits, etc
rad_crs_attr_dtl Stores attributes about each class offered by the institution – associated with the

course-mst
rad_currrule_dtl Stores curriculum rule data bridged from the SIS and used for What-If and

Transfer Equivalency goal data filtering
rad_custom_dtl Stores other information about the student need by scribe requirements
rad_custom_hsh Stores hash for the custom_dtl data

 Degree Works | Technical Guide 5.0.3.1 180

Table Description
rad_ets_mst Transfer Equivalency list of transfer schools
rad_goal_dtl Stores school, degree, student level, catalog year information
rad_goal_hsh Stores hash for the rad_goal_dtl
rad_goaldata_dtl Stores fields of study, such as major, minor, concentration, as well as advisor

information
rad_goaldata_hsh Stores hash for the rad_goaldata_dtl
rad_hash_mst Stores a record of what was loaded for this student; works with all rad_*_hsh

tables
rad_log_dtl Log of bridge activity
rad_next_id_mst Next-id information for courses, students and ETS
rad_noncrse_dtl Stores student non-course data
rad_noncrse_hsh Stores hash for the noncrse_dtl data
rad_previnst_dtl Stores student’s previous degree information
rad_previnst_hsh Stores hash for the previnst_dtl data
rad_primary_mst Stores student name
rad_report_dtl Stores other student data that needs to appear on the worksheet
rad_report_hsh Stores hash for the report_dtl data
rad_student_hsh Stores hash value for the primary (name), biog (birthdate and SSN) and student

(active-term) data
rad_student_mst Stores the student’s active term
rad_swap_id_dtl Stores a record of when a student ID was changed from one value to another via

the bridge
rad_term_dtl Stores student cum GPA/credits
rad_term_hsh Stores hash for the term_dtl data
rad_test_dtl Stores student test score information
rad_test_hsh Stores hash for the test_dtl data
rad_transfer_dtl Stores transfer class information
rad_transfer_hsh Stores hash for the transfer_dtl data

shp Tables
Table Description
shp_composer_mst Stores baseline and localized Shepherd Script records
shp_group_mst Loaded from UCX_SHP077; specifies default keys/access for each user-

class
shp_log_dtl Stores web activity information
shp_resource_mst Stores baseline and localized CSS, XSL, image and application properties

records
shp_service_mst Stores key-ring for tabs, functions, etc – though normally key and service

names match
shp_user_mst Stores user’s ID and password and primary user class

 Degree Works | Technical Guide 5.0.3.1 181

sep Tables
Student Educational Planner

Table Description
sep_plan_class Plan class information.
sep_plan_class_note Plan class note.
sep_plan_gpa Plan gpa information
sep_plan_gpa_note Plan gpa notes.
sep_plan_group Plan group information.
sep_plan_noncourse Plan non-course information.
sep_plan_noncourse_note Plan non-course note.
sep_plan_note Plan notes.
sep_plan_placeholder Plan placeholder information.
sep_plan_placeholder_note Plan placeholder note.
sep_plan_term Plan term information.
sep_plan_term_note Plan term note.
sep_plan_test Plan test information.
sep_plan_test_note Plan test notes.
sep_tmpl_class Template class information.
sep_tmpl_class_note Template class note.
sep_ tmpl _gpa Template gpa information
sep_ tmpl _gpa_note Template gpa notes.
sep_ tmpl _group Template group information.
sep_tmpl_noncourse Template non-course

information.
sep_tmpl_noncourse_note Template non-course note.
sep_ tmpl _note Template notes.
sep_ tmpl _placeholder Template placeholder

information.
sep_ tmpl
_placeholder_note

Template placeholder note.

sep_ tmpl _term Template term information.
sep_ tmpl _term_note Template term note.
sep_ tmpl _test Template test information.
sep_ tmpl _test_note Template test notes.

Transit Tables
The Transit tables are in a different schema than the rest of the Degree Works tables. On the
classic server see the $DB_LOGIN_TRANSIT variable to determine where the Transit tables
reside. On the classic server you can run dbt to run sqlplus to connect to the Transit schema.

Table Description
TRANSIT_JOB_INSTANCE This table stores information on requested, running, and completed

jobs.
TRANSIT_ARTIFACT This table hold one artifact of a job. An artifact is some kind of output

from the job such as a report, stdout, or action report.
TRANSIT_SEED Holds the next available job number.
DATABASECHANGELOG Used by the database maintenance utility to track database changes.

Not used by Degree Works applications directly.
DATABASECHANGELOGLOCK Used by the database maintenance utility to track database changes.

Not used by Degree Works applications directly.

 Degree Works | Technical Guide 5.0.3.1 182

Special Scripts
The scripts identified below will not always be accessed through a user interface. Most of these
scripts are used within other scripts and processes, and are listed here for informational
purposes.

Scripts that have additional documentation needs are listed after the table and have an asterisk
(*) next to their names in the first column.

Warning: Do not place scripts into the local/scripts directory as they are not used; only those
used in app/scripts are used.

List of Scripts used by Degree Works
Script name Description
bannerextract Batch extract Banner data – see the Banner Considerations documentation

for more information
colleagueextract Batch extract Colleague data – see the Colleague Considerations

documentation for more information.
Changepassword* Finds the shp_user_mst using the input Access ID (shp_access_id) and

replaces the shp_access_code with the input Password.
convertplans* Converts classic Student Educational Planner (SEP) plan tables into the

new generation SEP plan table structure.
converttemplates* Converts classic Student Educational Planner (SEP) template tables into

the new generation SEP template table structure.
dap16all Reparses all the blocks in the database; it simply calls DAP16JOB.
dap22dbg Runs and tar up lots of good information on the audit for this student.

$ dap22dbg 123456 mytarfile
dap22ids Runs audits based on the student IDs in specified file – must be in data

directory; use parameter file common/DAP22IDS: example: dap22ids
MYSTUIDS

dapauditstopdffiles* Takes an input file of audit IDs and the name of a FOP stylesheet and
creates a separate PDF file for each audit. See below for more details.

dapauditstoxmlfiles* Takes an input file of audit IDs and creates a separate XML file for each
audit. See below for more details.

dapauditstoxml* Runs the getxmlaudit against the audits in the db and sends results to a
single file; you can modify the script to select a subset of audits/students

dapblockinsert* Inserts each of the blocks found in the admin/blocks directory into the db;
see the script for the format of the header each block must have for it to
find the block type and title; the script prompts the user for the start and
stop catalog year. See below for more details.

dapblockload Loads the dap-req-block and dap-next-id-mst (domain of RA or RB) from
files. You must specify a parameter of R to do all requirements or RB to
only load in the blocks starting with RB or RA for the non-planner blocks.
The RB blocks are those generated from plans for students. Note, you
cannot use the load/unload scripts to copy between two environments on
two different versions of Degree Works. Please see the As Neeeded Tasks
section for more information.

 Degree Works | Technical Guide 5.0.3.1 183

Script name Description
dapblocksget Use this to back-up your blocks to a text file named blocks.out. The output

file will contain all primary and secondary tags and the block text.
$ dapblocksget MAJOR 2015 # get the major blocks for this catalog year
$ dapblocksget MAJOR # get the major blocks for all catalog years
$ dapblocksget # get all blocks

dapblockunload Unload the dap-req-block and dap-next-id-mst (domain of RA or RB) to
files. The default is to unload only the RA blocks to files. You can specify a
parameter of R to do all requirements or RB to only unload the blocks
starting with RB. The RB blocks are those generated from plans for
students. Note, you cannot use the load/unload scripts to copy between
two environments on two different versions of Degree Works. Please see
the As Neeeded Tasks section for more information.

dapdelaudits Deletes audits older than the specified date. See the Freezing Audits
section for more information about deleting frozen audits.

dapfindbadaudits* Displays a list of audits by student ID, audit ID and audit date that are
believed to be corrupt. See the section below for more information.

dapfindorphanedaudits* Displays a list of audits by student ID, audit ID, old degree and new degree
that are associated with a student in the rad_goal_dtl that now has a
different school/degree. See the section below for more information.

daphits Shows how many times the Degree Works web services have been hit;
see dapreset

dapmapcopy* Copies all of the mappings from one school to another school (See Special
Topic)

dapmapload Loads the dap-mapping-dtl, dap-map-cond-dtl, dap-title-dtl and dap-next-
id-mst (domain of M) from files. Note, you cannot use the load/unload
scripts to copy between two environments on two different versions of
Degree Works.

dapmapunload Unloads the dap-mapping-dtl, dap-map-cond-dtl, dap-title-dtl and dap-next-
id-mst (domain of M) to files. Note, you cannot use the load/unload scripts
to copy between two environments on two different versions of Degree
Works.

dapreqcrs Finds the blocks the reference a particular course (used by SCR02JOB)
dapreqgrep Searches through the text on the dap-req-text-dtl for the string specified

(used by SCR10JOB)
dapreqlist Gets a listing of block type, block value, title, catalog years and parse

status for all blocks. (used by SCR05JOB)
dapreq2ndlist Gets a listing of block type, block value, title, catalog years and parse

status and all of the secondary tags for all blocks. Used by SCR06JOB.
dapreset Resets the hit counter on the Degree Works web services to zero; see

daphits
daprestart Runs dapstop and then dapstart – and optionally with debugging on
dapsendemail

Send an email to this address with the contents of this file as the body with
this subject. Example:
$ dapsendemail myfriend@myschool.edu thisfile.log “Results of query”

dapshow Shows the dap10 and dap08 processes
dapstart Starts dap10 and dap08 for use with the Scribe. See the System Admin

section for more information.
dapstop Stops the dap10 and dap08 processes
dapucx2eqv Loads the equivalences from UCX-CFG070 into the dap-eqv-crs-mst
dapucxload Loads the UCX from a file. See the System Administration section for more

details.
dapucxunload Unloads all of the UCX to a file. See the System Administration section for

more details.
dapxpt Shows the list of exceptions saved to the database

 Degree Works | Technical Guide 5.0.3.1 184

Script name Description
dbbuild* Modify or create Degree Works database tables and objects.
debugoff Exports DWDEBUG=0; unsets DW_LOGDEBUG_PID
debugon Exports DWDEBUG=1; export DW_LOGDEBUG_PID to the 1st param

specified
deleteall Used to delete ALL student data from a Degree Works database. This

script calls deleteall.sql which truncates the Degree Works database tables
which store student data. Only students are affected, other users are not
deleted.

deletestu Used to delete student data from Degree Works database based on bridge
date. Prompts user for date in YYYYMMDD format; all student data
bridged <= that date will be deleted. See Systems Administration section
for more details. Only Banner or Colleague schools can use this script.

dgwversion Shows version information for Degree Works source code.
dwsettings* Import, Export, Delete, or Overwrite on the shp_settings_mst table – see

section below
etssync Synchronize the rad_ets_mst records from the global directory. For more

information run “etssync --help”.
exptable Exports the data for a given table to a file – to be later imported using

importall;
example: exptable dap_next_id_mst myfile "dap_next_id
like 'P%'"
Note: only tables listed in dapdb, ucxdb, shpdb or raddb in the schema
directory can be used with this script.

getxmlaudit* Unloads and audit from the db and runs dapext to create an xml <Audit>
tree;
example: getxmlaudit AA000123

importall Imports the data in the given file (created by exptable);
example: importall SHP myfile

launchjob A script to launch Transit jobs via cron. See the section Cron setup for
Degree Works in this document for more information.

petsend Sends an email to the given address notifying of WAITING or APPROVED
petitions.

profiledbg* Analyzes a debug file that contains timing entries and creates a data file
that can be imported into a spreadsheet for analysis. Requires knowledge
of the internals of the Degree Works programs, and so is to be used under
direction from the Degree Works Action Line.

rad30dbg Runs and tar up lots of good information on the Banner extract. The tar file
created will always be “rad30dbg.tar”. It will overwrite a previously existing
file. Examples:

$ rad30dbg student [student ID]
$rad30dbg student 123456

$ rad30dbg student [student SQL file.sql]
$rad30dbg student stuselect.sql

$ rad30dbg [any bannerextract mode]
$ rad30dbg advisor

radrestart Runs radstop and then radstart
radshow Shows the rad08 processes and its children
radstart Starts rad08 – dynamic bridge daemon
radstop Stops the rad08 processes
resrestart Runs resstop and then resstart
resshow Shows the dap25 parent and any running child processes
resstart Starts dap25 – dynamic CPA daemon

 Degree Works | Technical Guide 5.0.3.1 185

Script name Description
resstop Stops the dap25 process
rmoldfiles A new script created to help you keep the logdebug, dgwspool and data

directories clean of files building up. You can add rmoldfiles to your chron
job running weekly or nightly. The 1st parameter is the directory name and
the second parameter is the age of the file in days; if not supplied the
default is 7 days:
Examples:
 $ rmoldfiles logdebug
 $ rmoldfiles /dw/admin/data
 $ rmoldfiles dgwspool 7
 $ rmoldfiles /dw/admin/jobdata

To add the rmoldfiles script to your cron job you can run crontab -e and
edit the file to run the rmoldfiles script. The user that owns the crontab file
must have proper permissions to delete the logdebug files.

$ crontab –e

min hr dm mo dw script

Run rmoldfiles every Sunday morning to delete

logdebug files older than 7 days

 0 5 * * 0 /dw/app/scripts/rmoldfiles
/dw/admin/logdebug 7 >/tmp/rmlogdebug.log 2>&1

 0 5 * * 0 /dw/app/scripts/rmoldfiles
/dw/admin/dgwspool 15 >/tmp/rmdgwspool.log 2>&1

 0 5 * * 0 /dw/app/scripts/rmoldfiles /dw/admin/data
20 >/tmp/rmdata.log 2>&1\

sepdeleteplan Delete a plan from the sep_plan table and all of its related tables by the
student ID or the plan ID. Use “sepdeleteplan -h” for more information.

sepdeletetemplate Delete a template from the sep_tmpl_mst table and all of its related tables
by the template ID. Use “sepdeletetemplate -h” for more information.

setdbpasswords Configures the values for the Degree Works database password and the
Student Information System database password. You may give the
passwords either as option flags to the command or as positional
parameters. If given as positional parameters, the Degree Works password
is first. If neither of those is provided, the script will prompt for the values.
The SIS password is optional. For more information, issue the
setdbpasswords --help command.

showdbpasswords Displays the encrypted string that represents the database passwords.
This is typically used in the configuration of the data source for the java
applications. For more information, issue the showdbpasswords --help
command.

packdebug Reads debugging output from specified log files by sessionId and creates a
zip file with an encrypted key. The script should be run in the target
directory where log files exist, or should be provided complete log file path
for the parameters. For more information, issue the packdebug --help
command.

sharegen* Produces schema file(s) for the purpose of separating shared and unique
tables for a Degree Works database that supports multiple institutions.
Called by the dbbuild script.

shareinfo* Generates a list of database owners and associated table_names with
table_names like ‘DGW%’, ‘RAD%’, ‘SHP%’ or ‘UCX%’.

 Degree Works | Technical Guide 5.0.3.1 186

Script name Description
tableload Load in a file that was created from a tableunload. Before running

tableload you should empty the contents of the table in the target
database. Use “tableload HELP” for more information. Note, you cannot
use the load/unload scripts to copy between two environments on two
different versions of Degree Works.

tableunload Unload a database table to a file. This is useful for copy the contents of a
table from your test environment to your production environment, for
example. Use “tableunload HELP” for more information. Note, you cannot
use the load/unload scripts to copy between two environments on two
different versions of Degree Works.

ucxsync Synchronize certain UCX tables loaded on different classic servers. For
more information run “ucxsync --help”.

tbedelete Delete Transit job instances records and associated artifacts by age. This
script takes a numeric parameter indicating the number of days old for jobs
to be deleted from the Transit database. This script can be run via cron on
a regular basis to remove old jobs with status of “DONE” or “FAILED”.
Issue tbedelete –help for more information.

tberestart Runs tbestop followed by tbestart
tbeshow Shows the transitexecutor process
tbestart Starts the transitexecutor process
tbestop Stops the transitexecutor process
webanalyze

Script to analyze your web.log file. You can optionally email the results to
someone; setting this up in cron to run daily is a good idea.

Example: webanalyze - defaults to admin/logdebug/web.log
Example: webanalyze myold.web.log
Example: webanalyze web.log me@myschool.edu
See additional notes in the Systems Performance section on this topic.

webrestart Runs webstop and then webstart – and optionally with debugging on.
webshow Shows the web07 processes
webstart Starts web07 for use with the web. See the System Admin section for more

information.
webstats This is a tool to produce statistics on the performance of the web daemons

by analyzing the web.log file. Its primary purpose is to produce a data file
containing a time series of web daemon metrics. This includes the periodic
measurements of the average transaction duration and maximum
transaction count for each of web07. The comma-delimited file can be
input into a spreadsheet or other statistical program for further analysis and
graphing. See the Performance section for more information about this
command.

webstop Stops web07 daemon processes.
webtime

Script to check how long web requests are taking to process

Example: webtime - defaults to admin/logdebug/web.log
Example: webtime myold.web.log

 Degree Works | Technical Guide 5.0.3.1 187

changepassword
The changepassword command changes the password stored in the shp_access_code on the
shp_user_mst. It accepts a Shepherd Access ID (maximum of 14 contiguous characters) and
Password (maximum of 64 contiguous characters) as input parameters. The command must be
executed from the system command prompt. The input Access ID and Password are passed onto
the SHP31 program which then finds the shp_user_mst for the Access ID and updates the
shp_access_code with the new password.

Format:

changepassword <AccessId> <Password>

Example:

$ changepassword 12345678901234 this-is-my-password-with-no-spaces

If you do not supply both the Access ID and a Password you will be prompted for them.

Note: NO BLANKS are allowed in the Password. The first BLANK found will signify the end of the
Password.

convertplans
This script is to be used to convert classic Student Educational Planner (SEP) database tables for
plans into the structure required for the new, third generation of SEP delivered with the DW4.1.0
release. This script should be run prior to beginning implementation of the new generation of
SEP. It may be run more than once, however all previously converted plans will be deleted and
then reconverted. This means that any changes made to previously converted plans in the new
generation SEP will be lost when convertplans is run again.

To execute simply run the command at the UNIX prompt. A “converting plan” message will
appear as each plan is processed.

$ convertplans

The DAP plans will be converted to the new SEP plans.
 If this script was run before then all previously converted
 plans will first be deleted to prevent duplication.
 The old DAP plans will not be deleted.
Continue with conversion? (y/N) > y

Deleting previously converted plans... done with deletes.

- converting plan for student 001234 - Accounting major ...
-- converted 13 courses for plan #1
-- converted 1 notes for plan #1

- converting plan for student 1116 - Geography major with History...
-- converted 5 courses for plan #1
-- converted 3 notes for plan #1

- converting plan for student 1116 - Anthropology Major ...
-- converted 5 courses for plan #2
-- converted 3 notes for plan #2

- converting plan for student 2055 - Zoology major - BS...
-- converted 6 courses for plan #1
-- converted 2 notes for plan #1

 Degree Works | Technical Guide 5.0.3.1 188

...

Converted 397 plans

Number of sep_plan records created = 390
Number of sep_plan_term records created = 1629
Number of sep_plan_group records created = 1659
Number of sep_plan_class records created = 5027
Number of sep_plan_placeholder records created = 373
Number of sep_plan_note records created = 75
Number of sep_plan_term_note records created = 1176

The classic SEP tables are converted to the new generation SEP tables in this manner:

DAP_PLANNER_DTL -> SEP_PLAN

DAP_PLANCRS_DTL -> SEP_PLAN_TERM, SEP_PLAN_GROUP, SEP_PLAN_COURSE,
SEP_PLAN_PLACEHOLDER

DAP_PLANNOTE_DTL -> SEP_PLAN_TERM, SEP_PLAN_TERM_NOTE, SEP_PLAN_NOTE

Below are the details of how each SEP table is populated from the DAP tables.
A SEP_PLAN record will be created for each of the students’ plans.

sep_plan dap_planner_dtl Comments

plan_id dap_stu_id + “.” +
dap_plan_num

student_id dap_stu_id

tmpl_mst_id dap_plan_id

description dap_description

is_active dap_active_flag

is_locked dap_locked If blank, will be defaulted to
“N”

approval_status dap_appr_status If blank, will be defaulted to
“NO”

school dap_school

degree dap_degree

official_tracking_status “NOTEVALUATED”

unofficial_tracking_status “NOTEVALUATED”

is_tracking_status_current “N”

modify_who dap_mod_id

modify_date dap_mod_date

modify_what “CONVERSION”

create_who dap_mod_id

create_date dap_mod_date

 Degree Works | Technical Guide 5.0.3.1 189

create_what “CONVERSION”

A SEP_PLAN_TERM and a SEP_PLAN_GROUP record will be created for each unique term
found on the plan for each student.

sep_plan_term dap_plancrs_dtl

term_id dap_stu_id + “.” + dap_plan_num + “.” + dap_term

plan_id dap_stu_id + “.” + dap_plan_num

group_id dap_stu_id + “.” + dap_plan_num + “.” + dap_term

term dap_term

official_tracking_status “NOTEVALUATED”

unofficial_tracking_status “NOTEVALUATED”

is_tracking_status_current “N”

modify_who dap_planner_dtl.dap_mod_id

modify_date dap_planner_dtl.dap_mod_date

modify_what “CONVERSION”

create_who dap_planner_dtl.dap_mod_id

create_date dap_planner_dtl.dap_mod_date

create_what “CONVERSION”

sep_plan_group dap_plancrs_dtl

group_id dap_stu_id + “.” + dap_plan_num + “.” + dap_term

term_id dap_stu_id + “.” + dap_plan_num + “.” + dap_term

group_type “UN”

group_id_parent dap_stu_id + “.” + dap_plan_num + “.” + dap_term

sequence 1

modify_who dap_planner_dtl.dap_mod_id

modify_date dap_planner_dtl.dap_mod_date

modify_what “CONVERSION”

create_who dap_planner_dtl.dap_mod_id

create_date dap_planner_dtl.dap_mod_date

create_what “CONVERSION”

A SEP_PLAN_CLASS record is created from each course on the classic plan.

sep_plan_class dap_plancrs_dtl

 Degree Works | Technical Guide 5.0.3.1 190

class_id dap_stu_id + “.” + dap_plan_num + “.” + dap_term + “.” + dap_crs_seq

group_id dap_stu_id + “.” + dap_plan_num + “.” + dap_term

is_critical “N”

required_term (blank)

course_discipline dap_discipline

course_number dap_course_num

campus (blank)

delivery (blank)

credits dap_credits

minimum_grade (blank)

sequence dap_crs_seq

tracking_status “NOTEVALUATED”

modify_who dap_planner_dtl.dap_mod_id

modify_date dap_planner_dtl.dap_mod_date

modify_what “CONVERSION”

create_who dap_planner_dtl.dap_mod_id

create_date dap_planner_dtl.dap_mod_date

create_what “CONVERSION”

However, if the first byte of the dap_discipline is a hyphen character then a
SEP_PLAN_PLACEHOLDER record will be created instead of a SEP_PLAN_CLASS record.

sep_plan_placeholder dap_plancrs_dtl

placeholder_id dap_stu_id + “.” + dap_plan_num + “.” + dap_term + “.” + dap_crs_seq

group_id dap_stu_id + “.” + dap_plan_num + “.” + dap_term

is_critical “N”

placeholder_type “CONVERSION”

placeholder_value dap_discipline + “ “ + dap_course_num

sequence dap_crs_seq

tracking_status “NOTEVALUATED”

modify_who dap_planner_dtl.dap_mod_id

modify_date dap_planner_dtl.dap_mod_date

modify_what “CONVERSION”

create_who dap_planner_dtl.dap_mod_id

create_date dap_planner_dtl.dap_mod_date

create_what “CONVERSION”

 Degree Works | Technical Guide 5.0.3.1 191

When the DAP_PLANNOTE_DTL.dap_term field contains “PLAN” a SEP_PLAN_NOTE record is
generated.

 sep_plan_note dap_plannote_dtl

plan_note_id dap_stu_id + “.” + dap_plan_num

plan_id dap_stu_id + “.” + dap_plan_num

note_text dap_note_text (all text concatonated)

author dap_planner_dtl.dap_mod_id

sequence “1”

internal “N”

modify_who dap_planner_dtl.dap_mod_id

modify_date dap_planner_dtl.dap_mod_date

modify_what “CONVERSION”

create_who dap_planner_dtl.dap_mod_id

create_date dap_planner_dtl.dap_mod_date

create_what “CONVERSION”

When the DAP_PLANNOTE_DTL.dap_term field does not contain “PLAN” a
SEP_PLAN_TERM_NOTE record is generated.

sep_plan_term_note dap_plannote_dtl

term_note_id dap_stu_id + “.” + dap_plan_num + “.” + dap_term

term_id dap_stu_id + “.” + dap_plan_num + “.” + dap_term

note_text dap_note_text (all text concatonated)

author dap_planner_dtl.dap_mod_id

sequence “1”

internal “N”

modify_who dap_planner_dtl.dap_mod_id

modify_date dap_planner_dtl.dap_mod_date

modify_what “CONVERSION”

create_who dap_planner_dtl.dap_mod_id

create_date dap_planner_dtl.dap_mod_date

create_what “CONVERSION”

 Degree Works | Technical Guide 5.0.3.1 192

converttemplates
This script is to be used to convert classic Student Educational Planner (SEP) database tables for
templates into the structure required for the new, third generation of SEP delivered with the
DW4.1.0 release. This script should be run prior to beginning implementation of the new
generation of SEP. It may be run more than once, however all previously converted templates
will be deleted and then reconverted. This means that any changes made to previously converted
templates in the new generation SEP will be lost when converttemplates is run again.

To execute simply run the command at the UNIX prompt. A “converting template” message will
appear as each template is processed.

$ converttemplates

The DAP templates will be converted to the new SEP templates.

 If this script was run before then all previously converted

 templates will first be deleted to prevent duplication.

 The old DAP templates will not be deleted.

Continue with conversion? (y/N) > y

Deleting previously converted templates... (this will take a while) done with
deletes.

- converting template T0000002 A Geography major with History minor...

-- converted 2 courses for template T0000002

-- converted 1 placeholders for template T0000002

-- converted 4 notes for template T0000002

- converting template T0000003 Biology major - Chem minor...

-- converted 4 courses for template T0000003

-- converted 1 notes for template T0000003

- converting template T0000011 Zoology major - BS (PS)...

-- converted 3 courses for template T0000011

-- converted 1 notes for template T0000011

…

Converted 30 templates

Number of sep_tmpl_mst records created = 30

Number of sep_tmpl_tag records created = 107

Number of sep_tmpl_note records created = 9

Number of sep_tmpl_term_note records created = 28

Number of sep_tmpl_group records created = 57

Number of sep_tmpl_class records created = 209

The classic SEP tables are converted to the new generation SEP tables in this manner:

DAP_TEMPLATE_MST -> SEP_TMPL_MST,

 SEP_TMPL_TAG

DAP_PT_CRS_DTL -> SEP_TMPL_TERM,

 SEP_TMPL_GROUP,

 SEP_TMPL_COURSE,

 SEP_TMPL_PLACEHOLDER

 Degree Works | Technical Guide 5.0.3.1 193

DAP_PT_NOTE_DTL -> SEP_TMPL_TERM,

 SEP_TMPL_TERM_NOTE,

 SEP_TMPL_NOTE

Below are the details of how each SEP table is populated from the DAP tables.
A SEP_TMPL_MST record will be created for each of the templates.

sep_tmpl_mst dap_template_mst Comments

tmpl_mst_id dap_plan_id

template_id dap_plan_id

description dap_description

is_active dap_active_flag

term_scheme “CONVERSION” See “Term Scheme” note below

modify_who dap_mod_id

modify_date dap_mod_date

modify_what “CONVERSION”

create_who dap_mod_id

create_date dap_mod_date

create_what “CONVERSION”

A SEP_TMPL_TAG will be created for each curriculum value stored on the dap_template_mst.

sep_tmpl_tag dap_template_mst

tag_id dap_plan_id + “.” + <tag-code>

tmpl_mst_id dap_plan_id

tag_code One of SCHOOL, DEGREE, MAJOR, MINOR, CONC, COLLEGE, LIBL, SPEC,
PROGRAM, CATYEAR

tag_value (value from corresponding field on dap_template_mst)

modify_who dap_template_mst.dap_mod_id

modify_date dap_template_mst.dap_mod_date

modify_what “CONVERSION”

create_who dap_template_mst.dap_mod_id

create_date dap_template_mst.dap_mod_date

create_what “CONVERSION”

A SEP_TMPL_TERM and a SEP_TMPL_GROUP record will be created for each unique term
found on the template.

 Degree Works | Technical Guide 5.0.3.1 194

sep_tmpl_term dap_templatecrs_dtl

term_id dap_plan_id + “.” + dap_term

tmpl_mst_id dap_plan_id

group_id dap_plan_id + “.” + dap_term

term_seq Sequence number of term in template: 1…n

description Term sequence plus the term code. Example: “Term #2 (201220)”

modify_who dap_template_mst.dap_mod_id

modify_date dap_template_mst.dap_mod_date

modify_what “CONVERSION”

create_who dap_template_mst.dap_mod_id

create_date dap_template_mst.dap_mod_date

create_what “CONVERSION”

sep_tmpl_group dap_pt_crs_dtl

group_id dap_plan_id + “.” + dap_term

term_id dap_plan_id + “.” + dap_term

group_id_parent dap_plan_id + “.” + dap_term

group_type “UN”

sequence 1

modify_who dap_template_mst.dap_mod_id

modify_date dap_template_mst.dap_mod_date

modify_what “CONVERSION”

create_who dap_template_mst.dap_mod_id

create_date dap_template_mst.dap_mod_date

create_what “CONVERSION”

A SEP_TMPL_CLASS record is created from each course on the classic template.

SEP_TMPL_class dap_pt_crs_dtl

class_id dap_plan_id + “.” + dap_term + dap_crs_seq

group_id dap_plan_id + “.” + dap_term

is_critical “N”

required_term (blank)

course_discipline dap_discipline

course_number dap_course_num

campus (blank)

delivery (blank)

 Degree Works | Technical Guide 5.0.3.1 195

credits dap_credits

minimum_grade (blank)

sequence dap_crs_seq

modify_who dap_template_mst.dap_mod_id

modify_date dap_template_mst.dap_mod_date

modify_what “CONVERSION”

create_who dap_template_mst.dap_mod_id

create_date dap_template_mst.dap_mod_date

create_what “CONVERSION”

However, if the first byte of the dap_discipline is a hyphen character then a
SEP_TMPL_PLACEHOLDER record will be created instead of a SEP_TMPL_CLASS record.

sep_tmpl_placeholder dap_pt_crs_dtl

placeholder_id dap_plan_id + “.” + dap_term + dap_crs_seq

group_id dap_plan_id + “.” + dap_term

is_critical “N”

placeholder_type “CONVERSION”

placeholder_value dap_discipline + “ “ + dap_course_num

sequence dap_crs_seq

modify_who dap_template_mst.dap_mod_id

modify_date dap_template_mst.dap_mod_date

modify_what “CONVERSION”

create_who dap_template_mst.dap_mod_id

create_date dap_template_mst.dap_mod_date

create_what “CONVERSION”

When the DAP_PT_NOTE_DTL.dap_term field contains “PLAN” a SEP_TMPL_NOTE record is
generated.

 SEP_TMPL_note dap_pt_note_dtl

tmpl_note_id dap_plan_id

tmpl_mst_id dap_plan_id

note_text dap_note_text (all text concatonated)

author dap_template_mst.dap_mod_id

copy_to_plan “Y”

internal_on_plan “N”

 Degree Works | Technical Guide 5.0.3.1 196

sequence “1”

internal “N”

modify_who dap_template_mst.dap_mod_id

modify_date dap_template_mst.dap_mod_date

modify_what “CONVERSION”

create_who dap_template_mst.dap_mod_id

create_date dap_template_mst.dap_mod_date

create_what “CONVERSION”

When the DAP_TEMPLATENOTE_DTL.dap_term field does not contain “PLAN” a
SEP_TMPL_TERM_NOTE record is generated.

SEP_TMPL_term_note dap_templatenote_dtl

term_note_id dap_plan_id + “.” + dap_term

term_id dap_plan_id + “.” + dap_term

note_text dap_note_text (all text concatonated)

author dap_template_mst.dap_mod_id

sequence “1”

internal “N”

modify_who dap_template_mst.dap_mod_id

modify_date dap_template_mst.dap_mod_date

modify_what “CONVERSION”

create_who dap_template_mst.dap_mod_id

create_date dap_template_mst.dap_mod_date

create_what “CONVERSION”

Term Scheme
When templates are converted the SEP_TMPL_MST is created with a term_scheme of
“CONVERSION”. When you open the template in the Template Management user interface you
will find that this term scheme is not valid in UCX-SEP002. You need to change the term scheme
for each of your templates to a valid term scheme you have setup in UCX-SEP002. For example,
you may have one template with five terms – three fall terms and two spring terms. You will need
to create a new term scheme in UCX-SEP002 perhaps called “FIVE_TERMS” and set the term
scheme for your template to “FIVE_TERMS. However, you might also encounter another
template with five terms but this one might contain two fall terms and three spring terms – a
different combination than the previous one. You should not use the “FIVE_TERMS” term
scheme because the arrangement of term types is different. You should then create a different
term scheme perhaps called “FIVE_TERMS_B” and assign the appropriate term types to each
record.
Before creating any new term schemes in UCX-SEP002 you should first review all of your
templates to see what types of term schemes are needed. Doing this will help you create sensible

 Degree Works | Technical Guide 5.0.3.1 197

term scheme names and may convince you that some templates need to be changed to conform
to a standard set of term schemes. You should not create a term scheme called “CONVERSION”
in UCX-SEP002 to get around this issue since it will lead to many problems including errors when
creating plans from templates. If you find that all or most of your templates do conform to the
same type of term scheme then you may want to us SQL to update the term_scheme field on the
sep_tmpl_mst to your newly created term scheme name.
Regardless of the approach you take you should review each and every template for accuracy
and completeness.
Review the UCX-SEP002 documentation for more information.

dapauditstopdffiles
This script allows you to create a PDF file for each audit ID specified in the input file. You can
generate a file of audit IDs for students who have graduated or simply for archival purposes.
You run the script specifying two parameters. The first parameter is the file of audit IDs while the
second parameter is the name of the FOP XSL stylesheet – located in the local/xsl directory. For
example:

$ dapauditstopdffiles gradstudents.txt myfopaudits.xsl

Will use the myfopaudits.xsl file located in local/xsl to process each of the audit IDs found in
gradstudents.txt.
You may also want to place a list of audits for some of your student athletes into a file and specify
the athletic eligibility stylesheet.

$ dapauditstopdffiles stuathletes.txt myfopaudits-athl.xsl

When creating PDF files you should run your athletic audits separate from your financial aid
audits separate from your academic audits. You need to do this because you will want to specify
a different FOP stylesheet for each type of audit.

When getting started, it is recommended you perform a test with 10 audit-ids in a file. Make sure
the files get created without error. Also check the size of the files created. You can then
extrapolate based on these 10 files to see how much free space you will need on the system
when you run the script against your big list of audits.

The PDF creation process is not fast; it may take several seconds per audit. You may want to run
the job in the background to allow it to run overnight in the background, as follows:

$ dapauditstopdffiles gradstudents.txt myfopaudits.xsl > pdf.out 2>&1 &

When it completes you can review the pdf.out file for errors.
The format of each PDF file generated is: <stuid>~<school>~<degree>~<auditid>.pdf
Example: 9837631~UG~BA~AA000123.pdf

The files are placed in the current directory so you may want to create a special directory in which
to run this script.

Note: You may want to archive particular frozen audits. You should decide which frozen audits
you want to archive and then run SQL like that below to export these IDs to a file. Don’t forget to
specify the audit-type also to get either the Academic Audits (AA), Athletic Eligibility Audits (AE)
or Financial Aid audits (FA). See UCX-AUD032 for a list of the freeze-type values.

select dap_audit_id from dap_audit_dtl

 Degree Works | Technical Guide 5.0.3.1 198

where dap_freeze_type='FRZTYP' and dap_audit_type='AA'

order by dap_audit_id

dapauditstoxmlfiles
This script allows you to create an XML file for each audit ID specified in the input file. You can
generate a file of audit IDs for students who have graduated or simply for archival purposes.
You run the script specifying a single parameter - the file of audit IDs. For example:

$ dapauditstoxmlfiles gradstudents.txt

Will process each of the audit IDs found in gradstudents.txt.

When getting started, it is recommended you perform a test with 10 audit-ids in a file. Make sure
the files get created without error. Also check the size of the files created. You can then
extrapolate based on these 10 files to see how much free space you will need on the system
when you run the script against your big list of audits.

Unlike the corresponding PDF script, the XML creation process is fairly fast. However, you still
may want to run the job in the background to allow it to run in the background – like this:

$ dapauditstoxmlfiles gradstudents.txt > xml.out 2>&1 &

When it completes you can review the xml.out file for errors.
The format of each XML file generated is: <stuid>~<school>~<degree>~<auditid>.xml
Example: 9837631~UG~BA~AA000123.xml

The files are placed in the current directory so you may want to create a special directory in which
to run this script.

Note: You may want to archive particular frozen audits. You should decide which frozen audits
you want to archive and then run SQL like that below to export these IDs to a file. Don’t forget to
specify the audit-type also to get either the Academic Audits (AA), Athletic Eligibility Audits (AE)
or Financial Aid audits (FA). See UCX-AUD032 for a list of the freeze-type values.

select dap_audit_id from dap_audit_dtl
where dap_freeze_type='FRZTYP' and dap_audit_type='AA'
order by dap_audit_id

dapauditstoxml
Extracts all audits and converts to xml using the getxmlaudit script. All audits are placed in a
single XML file called allaudits.xml. Each audit is enclosed within start and end <Audit> xml tags
as with Web XML audits.

The SQL WHERE clause in the CreateSQLFile function may be modified to select a subset of
your audits based on date, audit-id, school, degree, student level, etc – anything on the dap-
audit-dtl record. You may want to run this script several times using different criteria to keep the
resulting xml file from getting too large. A single audit can easily be 100K meaning an extract of
100 audits would result in at least a 10MB file. You should conduct a few tests to see how big
your files will be and adjust the WHERE clause accordingly – the size of audits differs from school
to school.

 Degree Works | Technical Guide 5.0.3.1 199

To execute simply run the command at the UNIX prompt. The allaudits.xml file will be placed in
the current directory. A “Processing audit” message will appear as each audit is processed.

$ dapauditstoxml

Processing audit = [AE000268]...
Processing audit = [AE000273]...
Processing audit = [AE000269]...
Processing audit = [AE000259]...

You may redirect the output to a file if you do not wish to see the Processing messages:

$ dapauditstoxml > outputfile

You may want to compress the big xml file using some compression tool (like gzip) and move the
file off the system. You can always uncompress the file and view and search through the xml data
as needed.

dapblockinsert
Place the blocks you want loaded into the admin/blocks directory.

Ensure that the blocks directory is empty before placing your new set of files there.

The script loads the dap_req_block table with the blocks found. The text of the block is loaded
into a CLOB field in the table.

Run the script to load the blocks. Enter the appropriate catalog years to use for all blocks when
prompted. These catalog years are used as the default in case a block is encountered that does
not have the catalog years defined.

$ dapblockinsert
Please enter the start catalog year > 20072008
Please enter the stop catalog year > 99999999

You will see messages go to the screen. When it gets through all of the blocks it will process the
SQL Insert statements – this may take a few minutes if you have a lot of blocks.

The script writes information to a dapblockinsert.log file in the logdebug directory. Please
review it.

Be sure to run dap16 to parse the blocks and then fix the errors using Scribe.

Each file must contain header information and start with two #’s characters:
Line 1: can be the school name but it is ignored so it really can be anything
Line 2: must contain the block type and value
Line 3: must contain the block title
Line 4: optional – can contain the starting and ending catalog years separated by a hyphen.

Example:

##Ellucian University
##MAJOR=ACCT
##Major in Accounting

 Degree Works | Technical Guide 5.0.3.1 200

##2012-9999

BEGIN

;

END.

dapfindbadaudits
Shows a list of audits by student ID, audit ID and audit date that are believed to be corrupt. The
user is then given the opportunity to delete these bad audits and also is given directions on how
to run new audits for the students with these corrupt audits. When new audits are created and
saved to the database Degree Works may encounter a problem saving the new records to the
dap_audtree_dtl table. This is usually caused by running out of space in the database. When this
occurs Degree Works tags the dap_audit_dtl record and it is this tag that this script looks for to
report the corrupted audits.

Regardless of whether the user answers Y or N to delete the audits a file of student IDs is saved
to the admin/data directory. This file can then be run with the dap22ids script to create new audits
for these students.

$ dapfindbadaudits

These are the audits that are most likely corrupt.

This corruption is usually caused by running out of room in your database.

Here you see the student ID, audit ID and create date for each corrupt
audit.

Processing .. findbad.sql.5579

select dap_stu_id, dap_audit_id, dap_audit_date from dap_audit_dtl where

STUDENT_ID AUDIT_ID CREATE_DATE

========== ======== ======================

N88665547 AA044158 20100527

N00010771 AA044159 20100527

N00010771 AA044160 20100527

N00011380 AA044162 20100527

N00011380 AA044163 20100527

N00011380 AA044164 20100527

6 rows selected

Do you want to delete these bad audits? (y/N) > y

Deleting bad/corrupt audits now...

Deleted 6 audits from the database

The list of students with bad audits has been saved to this file:

/dwprod/admin/data/studentswithbadaudits.ids

You may run "dap22ids studentswithbadaudits.ids" to create new audits for
these students.

 Degree Works | Technical Guide 5.0.3.1 201

dapfindorphanedaudits
This script shows a list of audits by student ID, audit ID and old degree and new degree believed
to be orphaned. That is, these audits exist for students who have changed their degree since the
audit was generated. The user is then given the opportunity to delete these orphaned audits and
the CPA. Note that frozen audits are ignored as are what-if audits.

Please note that this script removes all CPA data for the student identified with the orphaned
audit; the script does not only delete the CPA records for the audit. You may want to recreate the
CPA data for the students’ newest audit after this script deletes the CPA data.

$ dapfindorphandaudits

These are the audits that belong to students who changed their degree.

Here you see the student ID, audit ID and old and new degrees for each.

(Note that frozen audits are ignored; they are not considered orphaned.)

(Note that what-if audits are also ignored.)

Processing .. findorphaned.sql.17139

select dap_stu_id Student_Id, dap_audit_id Audit_id, dap_degree Old_Degree,

STUDENT_ID AUDIT_ID OLD_DEGREE NEW_DEGREE

========== ======== ============ ============

210009206 AA043626 BA BBA

210009301 AA043632 BA DIPL

210009206 AA043703 BA BBA

210009301 AA043709 BA DIPL

210009206 AA043780 BA BBA

210009301 AA043786 BA DIPL

HERMIONE AA045100 MA BS

HERMIONE AA045101 BA BS

HERMIONE AA045103 MA BS

HERMIONE AA045104 BA BS

HERMIONE AA045351 GRAD_MA BS

HERMIONE AA045353 MA BS

HERMIONE AA045354 BA BS

HP AA045372 BA-ENGLISH BFA

HP AA045372 BA-ENGLISH BA

HP AA045372 BA-ENGLISH BS

16 rows selected

Do you want to delete these orphaned audits and associated CPA data? (y/N) >

Orphaned audits have not been deleted.

 Degree Works | Technical Guide 5.0.3.1 202

dapmapcopy
The dapmapcopy command allows you to copy the mappings for one school to another school.
The command must be executed from the system command prompt. The dap-mapping-dtl, dap-
map-cond-dtl and dap-title-dtl records are copied from one school to another.

Format:

dapmapcopy <from-id> <to-id>

Example:

$ dapmapcopy 004002 554987

If you do not supply both school IDs you will be prompted for them.

A high-level report of the steps dapmapcopy is taking is displayed to the screen. The high-level in
addition to the low-level details and errors are sent to $DGWHOME/tmp/dapmapcopy.log. You
may examine this log as needed.

The command unloads the all existing mappings for the to-id to $DGWHOME/archive/mappings
and then deletes them from the database. In doing this, mappings can be copied from a golden
copy multiple times as changes are made to the golden copy.

The school Ids used should already exist in the ETS-MST.

You may create a file containing multiple dapmapcopy commands to copy your mappings en
masse. For example, if your golden copy of mappings is for school ID 004002 you can copy the
mappings to multiple schools by creating the following lines in your script:

dapmapcopy 004002 123456
dapmapcopy 004002 123887
dapmapcopy 004002 323901
dapmapcopy 004002 349434
dapmapcopy 004002 990876
dapmapcopy 004002 884930

Before creating a file such as this be sure to confirm that running the command once gives you
the desired results. Be sure to check the results using Transfer Equivalency.

Example output from dapmapcopy:
$ dapmapcopy
Copy mappings from school ID > 004002
Copy the mappings to this school ID > 554987
=== Copying mappings from school 004002 to school 554987 ===
 == Unload mappings for school 004002 ==
 == Archive old mappings for school 554987 ==
 == Delete old mappings for school 554987 ==
 == Get the next mapping ID from dap-next-id-mst ==
 == The next mapping ID = MA092015 ==
 == Change mappings files to record oriented and rename to new ID ==
 == Change map and school ID on mappings ==
 == Change mappings files to stream oriented ==
 == Update next map-id in dap-next-id-mst ==
 == Load the new mappings for school 554987 ==
 == Reindex the mappings tables ==
=== DONE Copying mappings from school 004002 to school 554987 ===

 Degree Works | Technical Guide 5.0.3.1 203

dbbuild
This script creates all the database objects needed by the Degree Works software. It generates
the table definitions from the dwschema.xml definition file, using the share.xml configuration file,
which defines the relationship
between the various schema owners and their shared tables. It also loads all the necessary
ancillary views and packages.

Options:
 --banner Generate banner views and packages (default).
 --debug Output debugging messages to stderr.
 --help Display the help screen.
 --nobanner Do not generate banner views and packages.
 --pause Pauses the script after each step.
 --share Specifies the sharing configuration file.
 --usage Display command syntax only.
 --verbose Display progress information.
 --version Display the version of this script.

The sharing configuration file must be configured for your particular sharing needs. It can be
provided as the parameter to the --share option, or it will default to share.xml in the schema
directory.
The --dbuser option can provide a database user that has the ability to create tables for all the
schemas. If this option is omitted, then the value of the DB_LOGIN environment variable is used.
An experienced user can use the --pause option to step through specific parts of this command.
At the beginning of each step, you will be prompted to either stop, continue, or skip just the next
step.
The database, tablespaces, and users must be created prior to running this command. They are
not created by the command.
FILES:
 $DGWHOME/schema/dwschema.xml - is a file that contains the xml definition of all the
required tables. This file is provided by Ellucian, and should not be modified by the client.
 $DGWHOME/schema/share.xml - the default value for the file that defines the various schema
owners and the tables they share. For multi-entity clients, this file must be configured and
provided via the --share option.

dwsettings
This script is used to import settings into the shp_settings_mst, export settings into a file, delete
settings from the shp_settings_mst, or to overwrite settings from the shp_settings_mst. Additional
options allow settings to be encrypted during an import or decrypted on an export.

For an import, the input file can be a partial list of settings and can be an XML file or a properties
file.
For an export, the output file is always created as an XML file.
For a delete, the input file must be a properties file.
For an overwrite, the input file can be a partial list of settings and can be an XML file or a

 Degree Works | Technical Guide 5.0.3.1 204

properties file.

Options:
--import Sets the mode to import; the database will be updated.
--export Sets the mode to export; the data will be written to a file.
--delete Deletes the settings from the database. The file specified should be a properties

file format.
--overwrite Causes import to overwrite existing data, which it will not normally do.
--key Restricts the import and export to keys beginning with the keypattern.
--spec Define the spect to delete a key or a group of keys
--encrypt Causes import to encrypt specific entries, such as passwords. Without this

keyword, the data file is assumed to be already encrypted
--decrypt Causes export to decrypt specific entries, such as passwords. Without this

keyword, the data is exported encrypted.

One and only one of --import, --export, or --delete may be used.
--overwrite and --encrypt can only be used in import mode.
--decrypt can only be used in export mode.
The --key flag cannot be used with multiple files.

Examples of how to run dwsettings:
dwsettings import infile.xml

dwsettings --import infile.xml
<< specify infile.xml as the input file, existing settings will not be overwritten >>

dwsettings import infile.properties

dwsettings --delete delete.properties

<< specify infile.properties as the input file >>

dwsettings import infile.xml overwrite

dwsettings --import --overwrite infile.xml

dwsettings --import --overwrite --encrypt infile.xml

dwsettings --import --encrypt infile.xml

dwsettings --import --overwrite delete.properties

<< specify that all settings should be updated and overwritten>>

dwsettings export outfile.xml

<< specify outfile.xml as the output file >>

dwsettings export outfile.xml classicConnector

dwsettings --export --decrypt outfile.xml

dwsettings export outfile.xml listofSpecificKeys

dwsettings --export --key listofSpecificKeys --decrypt outfile.xml

dwsettings --export --key listofSpecificKeys infile.xml

dwsettings --delete --key listofSpecificKeys

 Degree Works | Technical Guide 5.0.3.1 205

dwsettings --delete --spec test --key listofSpecificKeys

<< specify that all listofSpecificKeys entries are to be exported >>
When a key is specified a LIKE is performed; example:
LIKE shp_settings_key LIKE '%listofSpecificKeys%'#

dwsettings --delete outfile.properties

dwsettings --delete --key listofSpecificKeys

dwsettings --delete --spec test --key listofSpecificKeys

<< outfile.properties should be a list of settings to delete, one setting per line >>
Note: The key is case-sensitive.

getxmlaudit
Extract specified audit from the db and convert to an xml file. The file name created will be the
audit-id with a .xml extension. The file will be placed in the current directory. The file will contain
two xml commands.

$ getxmlaudit AA000123

This will create a file called AA000123.xml.

launchjob
This script launches a Transit job by contacting the Transit API. This script does not run the job itself
but submits it to the Transit job queue. The job may run on any available executor, possibly on
another server. The command must be run in an initialized Degree Works environment. More
information about this script can be found in the Transit Administration Guide.

packdebug
The packdebug script can be used to collect debug files from the server when a user has enabled
debugging from the Java applications running on the Java Application Servers. It reads debugging
output from the specified log files by sessionId and creates a zip file with an encrypted key.

The script should be run in the target directory where log files exist, or should be provided the
complete log file path in the parameters. If the input files do not exist, no files will be processed.

OPTIONS:
--key <mykey> A user specified password for output zip file.
--output <outputZipName> A user specified file name for output zip file.
--session <sessionId> The debug sessionId provide in the UI when debug was enabled.

EXAMPLES:

 Degree Works | Technical Guide 5.0.3.1 206

packdebug --key myKey --output myOutputFile --session 2669bb29-781e-4be4-8a5d-

c348ffbd24bc scribe.log

packdebug --key myKey --output myOutputFile --session 2669bb29-781e-4be4-8a5d-

c348ffbd24bc /opt/apache-tomcat2/logs/scribe.log

packdebug --key myKey --output myOutputFile --session 2669bb29-781e-4be4-8a5d-

c348ffbd24bc /opt/apache-tomcat2/logs/@.log

profiledbg
Extract performance profiling data from a Degree Works classic debug file. This command is
intended for use by the Degree Works development team, and should only be upon consultation
with Ellucian.

SYNOPSIS
profiledbg [--verbose] [--output <file>] file [file2 ...]

DESCRIPTION
This command creates a data file to be used for profile analysis. It uses a file created by the
classic Degree Works debugging tool logdebug as input. It matches up LDTime benchmark
entries in the file and outputs a comma delimited file with the mark and duration for each
transaction. This can be imported into a spreadsheet to create a profile table giving counts
average and total durations, etc. To get a debug file to use with this command, export
DWBENCHMARK=1 before launching the program being profiled. It can also be used on debug
files created with the DWDEBUG environment variable set. If multiple debug files are given, then
the output of each will be concatenated into the one output file.
This command may output a message to stderr if it cannot find a matching LDTime begin mark
for the end mark it is processing. This is generally the result of a programming error of some sort.
For example, exiting a routine without issuing a DEBUG_MODULE_END. It may or may not throw
off results. The errant mark is simply discarded.
If no output file is provided, the script will output to a file named profiledbg.out. If you use a single
dash ("-") as the output file name, the output will be sent to stdout.
The --verbose switch provides progress notification as the script is executing, including
progress dots every 100 lines of file input.

FILE OUTPUT
The output file will be in the format:
Mark ID,0:0:1.234567890

The Mark ID column may have spaces or special characters, but it should not have commas, or
that will impede importation into a spreadsheet. There are no guarantees as to the number of
digits in the nanoseconds, although it will be 9 or less.
This file can be imported into Excel or another spreadsheet. A pivot table can then be constructed
using the Mark as the row and, as columns, a count of the marks, an average of duration, max of
duration, standard deviation of duration, sum of duration, and % of column total.

 Degree Works | Technical Guide 5.0.3.1 207

sharegen
The sharegen tool is intended for use in creating and maintaining the Degree Works database. It
produces schema file(s) for the purpose of separating shared and unique tables for a Degree
Works database that supports multiple institutions. As input, it takes an xml document describing
the database structure (dwschema.xml), an xml document describing the sharing relationships
between different institutions (share.xml), and the current database structure as divined from the
native database. As output, it creates a set of sql ddl scripts to create and/or alter the database to
fit the input specification. Output files can be generated in xml or sql format. In order to modify the
database, sql files must be generated. The type and location of output files is defined in
share.xml.

The sharegen script is called by the dbbuild script (it is never called directly). Before running
dbbuild, any new schemas (users) defined by share.xml must be created in the database. The
suggested procedure for setting up a schema/user named “dwschema” (for example) is to run the
following commands using SQLPlus and substituting the mypassword and tablespace name dgw
with a localized values.

1. create user dwschema identified by mypassword default tablespace dgw quota unlimited
on dgw temporary tablespace temp;

2. grant connect to dwschema;
3. grant dba to dwschema;
4. Verify the user was created: select * from all_users order by username;

dwschema.xml
This file is hand maintained and contains the general structural information for a Degree Works
database, such as dapdb, raddb, etc. It defines the tables, keys, and indexes for the database. It
uses the Torque/DdlUtils XML database schema DTD for the definition, which can be found at
Hhttp://db.apache.org/ddlutils/schema H. The file is located in $DGWHOME/schema/dwschema.xml.
Note that dwschema.xml is provided and maintained by Ellucian and should not be modified.

share.xml
This file is hand maintained and contains the configuration data defining the sharing relationships
between client entities. It defines each entity, and groups of these entities, and the tables they
share. This XML schema is unique to Ellucian. The default file used for a single school is located
in $DGWHOME/schema/share.xml. An example file for multiple schools sharing some of the
Degree Works tables located in $DGWHOME/schema/mepshareexample.xml An xsd schema file
is used to validate the structure and content of share.xml. It is located in
$DGWHOME/schema/dwshare.xsd.

More information on each of the important values in share.xml:

$ sharegen –-sourceSchema dwschema.xml –-shareInput share.xml

Depending on the configuration of share.xml this will produce one or more schema xml or sql
files.

Usage
sharegen [<configfile>] --sourceSchema <sourceSchema>

[--shareInput <shareInput>] [--validateOnly <validateOnly>]

[--changeDatabase <changeDatabase>] [--createTables <createTables>]

[--dropTablesFirst <dropTablesFirst>] [--continueOnError <continueOnError>]

http://db.apache.org/ddlutils/schema

 Degree Works | Technical Guide 5.0.3.1 208

[--dburl <dburl>] [--tnslocation <tnslocation>] [--usetns <usetns>]

[--tnsname <tnsname>] [--username <username>] [--password <password>]

 --sourceSchema <sourceSchema>

 The source schema file to use. Defaults to dwschema.xml.

 [--shareInput <shareInput>]

 The schema for which to generate xml schema. Defaults to share.xml.

 [--validateOnly <validateOnly>]

 Set validateonly=1 to validate share xml and schema xml. (default: 0)

[--changeDatabase <changeDatabase>]
 Set 1 to change/modify database immediately after creating output files.
 (default: 0)

[--createTables <createTables>]
 Set 1 to specify that CREATE TABLE statements will be generated. Set to
 0 if ALTER TABLE statements should be generated for objects that already
 exist in the database. (default: 0)

[--dropTablesFirst <dropTablesFirst>]
 Set 1 to output DROP TABLE statements in sql when createTables=1. This
 has no effect when createTables=0. (default: 0)

[--continueOnError <continueOnError>]
 Set 1 to continue processing live database changes even if errors occur.
 (default: 0)

 [--dburl <dburl>]

 The schema for which to generate xml schema. A jdbc string is built
using

 values from $DB_LOGIN, $TWO_TASK and $DB_PORT_NBR system variables.

 [--tnslocation <tnslocation>]

 The location of tnsnames.ora file. By default supplied by .config file
or script.

 [--usetns <usetns>]

 Set 1 to use tnsname or 0 to use local database. (default: 0)

 [--tnsname <tnsname>]

 TNS name to use when usetns=1

 [--username <username>]

 The database username

 [--password <password>]

 The database password

 Degree Works | Technical Guide 5.0.3.1 209

Default Values
The sharegen script is not run directly; it is called by the dbbuild script. The sharegen script
contains default values for dburl, sourceSchema and schemaInput, so those values do not
normally need to be entered. When the dbbuild script is run, those values cannot be overridden
on the command line. Alternatively a config file named sharegen.config can specify default values
for input parameters.

shareinfo
The shareinfo command generates a list of database owners and associated table names for
table names starting with DAP, RAD, SHP or UCX.

Format:

shareinfo

Example:

======== OWNER ============== ========TABLE =========

DGWDBA DAP_APPLICNT_MST
DGWDBA DAP_AUDIT_DTL
DGWDBA DAP_AUDTREE_DTL
DGWDBA DAP_COLLEGE_DTL
DGWDBA DAP_EQV_CRS_MST
DGWDBA DAP_EXCEPT_DTL
… (and rest of associated tables and any additional users)

 Degree Works | Technical Guide 5.0.3.1 210

Degree Works Security Options
Security in Degree Works consists of logon authentication, service authorization, and user-class
assignment. This document explains the options provided with Degree Works for controlling
security. When reviewing this document, keep in mind whether or not a database outside of
Degree Works already contains passwords for accessing services on your Web site. Think about
granting access to Degree Works and services within Degree Works. If your site already has a
method for granting and denying access to services then you may want to continue to use that
mechanism for Degree Works. Use this document to help answer the following questions:

1. What types of users will be accessing Degree Works via the Web?

Students?
Advisors?
Applicants?
Athletic Department?
Registrar?
Financial Aid Office?

2. What Degree Works services on the Web should be accessible to these types of users?
Running audits?
Reviewing audits?
What-If audits?
Adding, modifying, deleting, or reviewing notes?
Adding or modifying exceptions?
Searching for students?
Petitions?
Student Planner?
GPA Calculator?

3. Which users need access to Scribe for writing degree requirements?

4. Which users need access to Transit for running batch audits and processes?

5. Which users need access to Controller for maintaining UCX codes and Shepherd Settings?

6. Which users need access to Transfer Equivalency administration?

7. When a logon to Degree Works is requested, where will the user's credentials be
authenticated?

In Degree Works?
In your own central service?

These questions help determine how Degree Works is installed and which data should be sent
via the Bridge for storage in Degree Works.

HTTPS/SSL
It is strongly recommended that all Java application servers (e.g. Tomcat) running Degree Works
be configured with SSL certificates and to only allow HTTPS/SSL access to applications.
Documentation for SSL certificate setup is widely available from each vendor or product website.
Signed certificate providers provide additional documentation that relates their products and
specific to many common platforms. Clients are responsible for setting this up as part of
installation and configuration.

 Degree Works | Technical Guide 5.0.3.1 211

As a best practice, it is recommended that the Java application server be configured to not
support weak SSL protocols such as SSLv2, SSLv3, TLS 1.0 & TLS 1.1. For example, for
applications deployed on Tomcat, you should configure your <Connector> in server.xml with
these two attributes:

sslProtocol="TLS"
sslEnabledProtocols="TLSv1.1+TLSv1.2"

For Transfer Equivalency Self-Service and Composer (applications with embedded Tomcat 8),
you should add this environment variable to your deployment configuration to disable insecure
protocols, leaving only TLS 1.1 and 1.2 enabled:

SERVER_SSL_CIPHERS=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WI
TH_AES_128_GCM_SHA256,TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,TLS_DHE_RSA_WIT
H_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE_RSA_
WITH_AES_128_CBC_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,TLS_ECDHE
_ECDSA_WITH_AES_128_CBC_SHA256

Authentication
Logon authentication determines if the user is who they say they are. The user typically enters
an Access ID and Access Code (password), which is authenticated in a security database. The
security database can either be the one supplied with Degree Works, one affiliated with the
student system, or some institution wide central service such as CAS. Logon authentication
occurs prior to granting access to Degree Works.

One of several options for single sign-on (SSO) may be employed when Degree Works is
integrated with other systems. Degree Works supports SSO for Luminis, Self-Service Banner,
CAS, and SAML 2.0. External access managers such as Oracle Access Manager are also
supported.

The “changepassword” script may be used to change the password (shp_access_code on the
shp_user_mst) from the command line. Refer to the Special Scripts section for more details on
the “changepassword” script.

Banner Sites Only
The Banner extract programs generate default passwords for each student, advisor and staff
member processed. The password will be loaded with one of two forms:

(1) Password generated from custom SQL
(2) 10-byte random password.

If custom SQL exists in integration.banner.extract.config for the appropriate keyword
(PASSWORDSTU, PASSWORDADV or PASSWORDSTF) it will be used to read the Banner data
and format it into a password (1 to 64-byte password) that will be loaded into the
shp_access_code on the shp_user_mst for the individual. If the custom SQL is blank or the
password generated from the custom SQL is blank a 10-byte random alpha-numeric password
will be generated.

A ‘Change Password’ configuration flag exists in the UCX_CFG020 “WEBPARAMS” record. If
this flag is set to ‘N’ then the shp_access_code on the shp_user_mst will NOT be changed by the
Banner extracts, only added when the student, advisor or staff record is originally created.
Refer to the R171SHPU details in the Banner Data Mapping for BIF Technical Guide.

 Degree Works | Technical Guide 5.0.3.1 212

Multiple paths to Authentication

When a non-authenticated user attempts to access a secured Degree Works application, the user
will normally be redirected to a login page. There are three possible scenarios for this:

1) Native Degree Works login
2) CAS single sign-on login
3) SAML single sign-on login.

With native Degree Works login, the user credentials can be validated against either the native
Shepherd user database or an external LDAP server.

To configure the appropriate login scenario, change the Shep setting
core.security.authenticationType to one of “SHP”, “CAS”, or “SAML”. The configuration
requirements for each of these models are described below.

The authenticationType tells Degree Works where, if you are not already authenticated, to send
you for authentication. If it is “SHP”, then you will get the built-in Degree Works login page. “CAS”
will send you to a CAS server for login, and “SAML” will send you to a SAML server. When the
type is set to CAS or SAML you, therefore, cannot use the built-in login pages with the typical
Degree Works manager user. This authenticationType is used by all Degree Works applications
unless you create separate shep settings for each application. See the Multiple Authentication
Entry Points section below for information on how to do that.

As an alternative, you can configure an external access manager, such as Oracle Access
Manager or Shibboleth, to handle authentication. In this scenario all requests are intercepted
before they get to Degree Works, authentication is handled by the external access manager, and
only authenticated requests are forwarded to Degree Works. See the External Access
ManagerError! Reference source not found. section below for more configuration information
on this option.

Degree Works Native Login

Degree Works applications contain a login screen that can be used to collect users’ credentials
for access to the application. Each application is independent, and usually requires a separate
login for each one. We recommend that you look at CAS to provide a single sign-on experience.
To use the native login screen, set the Shep setting core.security.authenticationType to
“SHP”.

The user’s credentials can be validated either using the Degree Works Shepherd user database
that is populated via the bridge, and/or they can be validated using an external LDAP server. If
both are configured, then a valid entry in either database will authenticate the user.

Shepherd User Database
Degree Works provides a basic user security database for logon authentication and service
authorization. In this model, a shp-access-id and shp-access-code on the shp-user-mst is used
for each student, advisor, faculty, staff, and administrator authentication.

This model requires that clients send the user-class to the Bridge in the SHPU record. For Banner
clients this is handled by the Banner extract. For Colleague clients this is handled by the
Colleague extract.

To enable this type of authentication you must set several Shpherd settings in Controller:

 Degree Works | Technical Guide 5.0.3.1 213

• Set the core.security.authenticationType to “SHP”. This will direct users to the

native Degree Works login page and authenticate their credentials against either the shp-
user-mst and/or and LDAP database, depending on the following settings.

• Setting core.security.shp.authentication.enabled to “true” causes the login
credentials to be authenticated against the shp-user-mst.

• Setting core.security.ldap.enable to “true” causes the login credentials to be
authenticated against an LDAP database. See the following section on Error! Reference
source not found. for more configuration requirements. Either this setting or
core.security.shp.authentication.enabled must be set to “true” when using “SHP”
authentication. If both are set, valid credentials in either one will allow access to Degree
Works.

• Setting core.security.passwordEncoding.enabled to “true” causes Controller and the
Java bridges to encrypt the password. Note, however, that the Banner Extract as well as
the RAD extract still follows the Encrypt Password flag in the UCX-CFG020
WEBPARAMS record in Controller.

• Setting core.security.passwordCheck.sha1.enabled to “true” causes the user’s
password to be encoded with the SHA1 hash when comparing against the database
password. If the core.security.passwordEncoding.enabled is set to “true”, so should
this setting.

• Setting core.security.passwordCheck.clearText.enabled to “true” allows the
software to check the clear text (unencoded) password against the database. You would
do this if you have passwords that have not been encoded. For example, if you turn on
password encoding and do not reload all the users’ passwords, then you will have some
passwords stored in the database in unencoded form. You would need to set this to “true”
in order for those passwords to work.

• The core.security.shp.maxLoginAttempts setting specifies how many invalid login
attempts are allowed before further logins are ignored.

• The core.security.shp.failLoginResetMinutes specifies the amount of time in
minutes after the maximum number of login attempts have been exceeded before the
user is allowed to attempt another login.

Refer to the reference documentation on Shepherd Settings for more information about these
settings.

LDAP User Database
LDAP is frequently used as a central repository for user information and as an authentication
service. Degree Works can be configured to use an LDAP server instead of or supplementary to
Degree Works native authentication (SHP database). LDAP authentication is enabled by
changing the core.security.ldap.enable to “true”. The setting
core.security.authenticationType must be set to “SHP”. Both LDAP and native SHP
authentication can be enabled at the same time. In this case, valid credentials in either database
will allow access.

 Degree Works | Technical Guide 5.0.3.1 214

No authorization (keys and services) information will be retrieved from LDAP. This is still
controlled by Shepherd. An LDAP user must have an LDAP attribute that identifies their user
records (shp_user_mst) in Degree Works. See Locating Degree Works ID within LDAP.

LDAP can be configured for authentication in several different ways. You should be generally
familiar with LDAP before configuring Degree Works to use it. These instructions do not cover the
normal set up and use of an LDAP server.

You must tell the authentication software the location of the LDAP server by setting
core.security.ldap.serverUrl. For example, this might be something like
“ldaps://ldap.myschool.edu:636/ou=users,dc=myschool,dc=edu”. You should use the secure
LDAP protocol for this.

An administrative user is required to find the user’s record and read attributes in the LDAP
database. You configure this user’s dn in core.security.ldap.adminDn and their password in
core.security.ldap.adminPassword. This user must have the ability to search for and return
the user’s distinguished name (dn) as well as to read any users attributes. The password is
stored in encrypted form in the settings database.

Degree Works authenticates the user by binding to LDAP with the user’s dn. It determines the dn
in one of two possible ways. The first way is to use a pattern set in
core.security.ldap.userDnPattern. The pattern should contain the token “{0}” that will be
replaced by the user’s Access ID (login name). An example would be “uid={0}”. This is relative to
the base given in the core.security.ldap.serverUrl setting. So, if a user with the id
“bobstudent” logs in, and the serverUrl is set to “ldaps://ldap.myschool.edu:636”, and the
userDnPattern is set to “uid={0}”, then the software would expect the user’s unique dn to be
“ou=users,dc=myschool,dc=edu,uid=bobstudent”.

The second way to retrieve the user’s dn is to do a search with an LDAP filter expression. This
follows the format specified in RFC 4515. You should include a special token, “{0}”, in your
expression that will be replaced by the user’s Access ID (login user name). For example,
“(uid={0})”. The scope of this search may be further limited by setting a search base in the setting
core.security.ldap.userSearchBase. For more information about search filters see
https://tools.ietf.org/html/rfc4515.

Once the distinguished name is found, the user will be authenticated with a direct bind to the
LDAP server using the password provided by the user in the login process.

Locating Degree Works ID within LDAP

When authentication is successful, then Degree Works needs to find out how to locate or “map”
the LDAP user to Degree Works internal database in order to determine their authorities. The
username provided may not be the Degree Works ID, which is the ID from the Student
Information System, and it may not be the primary Access ID for the user in the Shp user
database. We map an attribute in the LDAP server to the Alternate ID in the user’s shp_user_mst
record via Controller. This should be bridged into Degree Works from the student system. You
specify which LDAP attribute to use for this mapping in the setting
core.security.ldap.studentId.attribute. It should be a unique attribute unless you are
using the suffix, as described below.

Suppose that all Degree Works users have an attribute in LDAP named “employeeNumber” (an
arbitrary example chosen from inetOrgPerson schema). You would need to populate that value
into the Alternate ID field in the Shp User Record, usually using the bridge. Refer to the
appropriate bridge document for your SIS for instructions on how to do this.

https://tools.ietf.org/html/rfc4515

 Degree Works | Technical Guide 5.0.3.1 215

It is possible to have multiple attribute values for the user’s Degree Works ID. In this case, you
must append a suffix to the Degree Works ID value in the LDAP record. You should use the same
suffix for every user, and you would define this suffix in the setting
core.security.ldap.studentId.suffix. So for example, you may use the attribute named
“externalId” for multiple systems, with Degree Works being just one of many, and each system
may need a different ID value. You would define a suffix, for example “::DGW” and append this
suffix to each ID entered in LDAP for this attribute. For example, bobstudent may have an
externalId attribute with a value of “12345668::DGW”. Degree Works will locate the value with the
given suffix and remove the suffix before it looks up the students shp_user_mst record. If you use
the suffix, every user must have this suffix appended to their attribute value.

CAS Single Sign-On
The Central Authentication Service (CAS) can be used to integrate Degree Works with portals
and other Web applications. CAS provides an open, well-documented protocol and an open-
source Java server component. CAS supports LDAP, Active Directory, and other data sources for
single sign-on. More information about CAS is available at http://www.jasig.org/cas.

Functionality

CAS provides single sign-on to applications by issuing a one-time-use ticket to an end user. The
ticket can be validated by a client application and is also used to retrieve the identity of the end user
for internal use. When configured for CAS authentication, Degree Works checks for a CAS ticket. If
a ticket is not present, the request is redirected to the CAS server. After CAS authentication takes
place, the request comes back to Degree Works with an authentication ticket. The end user’s
Degree Works record is retrieved by linking a CAS attribute obtained during ticket validation.

CAS installation and setup
The CAS installation, setup, and basic configurations are outside the scope of this document. As
a prerequisite to installing CAS, you need to be familiar with the CAS server, and should be able
to modify CAS, xml and jsp configuration files. Information about installing CAS and the
supported authentication mechanisms is available at
http://www.ja-sig.org/wiki/display/CASUM/Home.

Configuring Degree Works for CAS

CAS supports SSO by issuing a one-use ticket to an end user. The ticket can be validated by a
client application and is also used to retrieve the identity of the end user for internal use. Degree
Works uses different IDs to internally identify each end user and to log the ID into CAS. For
example, an end user usually logs into CAS using a CAS username, while Degree Works internally
uses the rad_id. As part of the CAS configuration, you must set up or choose an attribute in your
CAS backing data store that will map to the alternate ID field of the Shep user record. This alternate
ID is normally populated by the nightly student extract process. Alternatively, the attribute value
could map to the Shep access ID of the user.

In Banner, the source of the alternate ID it typically one of the following fields:

1. SPRIDEN_ID - a common choice at Banner sites to map to a Degree Works rad_id. Usually
this mapping takes place via the shp_user_mst.shp_access_id.

2. UDCID - Degree Works must be configured to extract GOBUMAP_UDC_ID to the
shp_user_mst.shp_alt_id field.

http://www.jasig.org/cas
http://www.ja-sig.org/wiki/display/CASUM/Home

 Degree Works | Technical Guide 5.0.3.1 216

To configure the Degree Works, all configurations described in the following steps must be
completed, including the configuration of the Shepherd Settings.

Step 1 - Configure the Degree Works Banner Extract

The Degree Works Banner Extract is configured to extract each user’s GOBUMAP_UDC_ID and
store it in Degree Works. Select access must be granted to the GOBUMAP table in Banner, for the
Degree Works user (typically dwmgr). When the Banner extract is run, if a GOBUMAP record is
found for the individual, the GOBUMAP_UDC_ID will be loaded into the
SHP_USER_MST.SHP_ALT_ID. If a GOBUMAP entry is not found, then the individual’s
SPRIDEN_ID will be loaded into the SHP_USER_MST.SHP_ALT_ID.

Step 2 - Configure a CAS service for Degree Works

The CAS server needs to know that the Degree Works URL is protected for SSO. This is
accomplished by configuring a CAS service for Degree Works.

Use the following steps to configure the CAS service that protects Degree Works.

1. Access your CAS server management page:

https://<CAS host>:<CAS port>/<CAS context path>/services/manage.html

2. Log in with a valid administrator user name and password (obtained from the CAS
administrator).

3. Select the Add New Service tab.

4. Enter the following values:

Name: Your choice (e.g. “Degree Works appname”)

Service URL: https://<Degree Works application host>:< Degree
Works application port>/<Degree Works application context path/

Description: Protecting Degree Works through CAS

Status: Select Enabled and SSO Participant.

Attributes: Select UDC_IDENTIFIER

5. Click Save Changes. The CAS server will now allow Degree Works to make sign on requests.

6. Repeat steps 3 through 5 for each application, such the Controller, Composer, Responsive
Dashboard and Scribe.

 Degree Works | Technical Guide 5.0.3.1 217

Step 3 - Export the CAS SSL certificate

The CAS server and the Degree Works Web server must run in the HTTPS/SSL mode. To enable
Degree Works to make an HTTPS connection to your CAS server, export the SSL certificate used
on your CAS server to a file (typically in the JKS keystore format) and make it accessible to the
Degree Works Java application container (e.g. Tomcat or Weblogic). Consult the documentation
from your certificate provider, for example VeriSign or Thawte, for more information on exporting
SSL certificates to a file and converting between various certificate formats.

Step 4 - Configure Degree Works for CAS support

The following Shep settings must be configured to enable CAS support:

core.security.authenticationType - Should be set to “CAS”. It directs Degree Works to redirect
unauthenticated requests to the CAS login page. The URL of the login page is configured in the
setting described below.

core.security.cas.callbackUrl - This should be set to the URL of your Degree Works application,
there should be one for each application with the appropriate specification value. It is used by CAS
to callback to Degree Works after the user has logged in.

core.security.cas.idAttribute - This is the attribute configured in the CAS server in step 2 and holds
the ID used to link the user to the Degree Works ID. For Banner clients this is typically set to
UDC_IDENTIFIER.

core.security.cas.loginUrl - This is the URL of the CAS login page. Degree Works will direct all
users to this page when they have not yet authenticated.

core.security.cas.serverUrlPrefix - The CAS URL used by Degree Works to validate the
authentication ticket sent with a request.

core.security.cas.useSamlTicketValidator - This is a “true”/”false” value that tells Degree Works
whether or not to use a SAML validation protocol with the CAS server when validating the ticket. If
set to “true” it will use the SAML protocols for ticket validation. Otherwise, it will use native CAS
protocols.

SAML Single Sign On
Degree Works can act as a service provider in a federated authentication environment that uses
the SAML 2.0 protocols. In a federated system, a user can log in to one of potentially several
different identity providers - services that can authenticate the user. The user is then able to
access Degree Works without having to sign in again. A trust relationship is established between
the identity provider and Degree Works. A SAML ecosystem is complex and powerful, and a
complete explanation is beyond the scope of this document. A good overview can be found at
www.oasis-open.org/committees/download.php/13525/sstc-saml-exec-overview-2.0-cd-01-
2col.pdf.

Configuring SAML
To enable SAML single sign-on, set core.security.authenticationType to “SAML”.
You must create the Service Provider metadata for each Degree Works application covered by
SAML authentication. The metadata is used to communicate configuration data to the various
identity providers in the system. A description of the metadata is beyond the scope of this
document, but there are a few items that are particular to a Degree Works installation. You will be

https://www.oasis-open.org/committees/download.php/13525/sstc-saml-exec-overview-2.0-cd-01-2col.pdf
https://www.oasis-open.org/committees/download.php/13525/sstc-saml-exec-overview-2.0-cd-01-2col.pdf

 Degree Works | Technical Guide 5.0.3.1 218

required to provide a Location attribute to the AssertionConsumerService element in the data.
This should be in the form “scheme://host:port/somepath/context/saml/SSO/optional/elements”.
For example, https://myschool.edu/degreeworks/dashboard/saml/SSO/samlPOST where
“somepath” is “degreeworks” and “context” is “dashboard” – the context you have specified in
your startup script for the application. A secure schema (e.g. https) is highly recommended here.
The metadata is stored in a SHP setting named
core.security.saml.metadata.xml.serviceProvider. Since the URL in the metadata is
unique to the application, you must configure one of these settings for each application, with a
different spec value for each setting, corresponding to the application. Refer to the Shp settings
documentation for the appropriate spec values.
The metadata for your identity provider is stored in the setting
core.security.saml.metadata.xml.identityProvider. There are not special Degree Works
modifications needed for this setting, and there only needs to be one with a “default” spec.
There are a number settings related to the security key store. The
core.security.saml.keystore.location specifies the location on the server where the key
store is located. It should begin with “file:”. For example: “file:/u01/jdk1.7.0_11/bin/keystore.jks”.
The password associated with the key store is stored in
core.security.saml.keystore.password. The key used to sign the SAML request should be
entered in the setting core.security.saml.keystore.keypair.signingKey. This is usually the
same value as the default key entered in core.security.saml.keystore.defaultKey. The
core.security.saml.keystore.keypair.password contains the password for the key in the
core.security.saml.keystore.keypair.signingKey.
Once the user has authenticated, an assertion is provided to Degree Works that identifies the
student. An attribute in the assertion must contain the ID located on the SHP_ALT_ID or
SHP_ACCESS_ID field in the SHP_USER_MST. The SHP_ALT_ID is normally loaded by the
extracts from the student system, but may be maintained in Controller. The name of attribute can
be anything, and is configured in the setting core.security.saml.idAttribute.

External Access Manager
An External Access Manager intercepts all requests to Degree Works, making sure they are
authenticated. Under this scenario, Degree Works has no responsibility for ensuring that the
requests have been authenticated. Examples of an external access manager include Oracle
Access Manager and Shibboleth. When configuring the external authentication manager, you
must ensure that all Degree Works endpoints are covered.
The external access manager asserts the user’s identity to Degree Works after authentication or
SSO has taken place. The configuration allows the assertion to have a configurable name and to
be delivered to Degree Works via an HTTP cookie or header.

Shepherd Settings configuration
core.security.externalAccessManager.enable

Enable external access manager. Again, it is important to take care never to leave this flag
enabled (true) unless an external access manager is in place, configured and operational. If
enabled, other security mechanisms (e.g. SHP, CAS) are disabled. In particular, the Shep setting
core.security.authenticationType is ignored.
core.security.externalAccessManager.assertionName

The name of the external access assertion token. This name can be any value of your choosing
except for "ASSERT_VALUE".
core.security.externalAccessManager.assertionIsCookie

https://myschool.edu/degreeworks/dashboard/saml/SSO/samlPOST

 Degree Works | Technical Guide 5.0.3.1 219

If true, expect to find assertion value in a cookie. The name of the cookie should match the value
in the setting core.security.externalAccessManager.assertionName. If false, it is expected
to be in a header.

Self Service Banner Single Sign-On
The preferred method for single sign-on integration of Self-Service Banner with Degree Works is
to use a standard central authentication service such as CAS or SAML. See the Degree Works
Banner Considerations Technical Guide for more information on this feature.

Luminis Single Sign-On
The recommended method for single sign-on integration of Luminis with Degree Works is CAS.
See the Degree Works Banner Considerations Technical Guide for more information on this
feature.

Multiple Authentication Entry Points
When the authenticationType is set to CAS or SAML, the basic SHP authentication is
automatically disabled. However, you may decide, for example, that you want the dashboard to
use CAS or SAML authentication but you may want Scribe or Controller to use basic SHP
security and the built-in login pages. To do that you can use Controller to create settings specific
to each application.

For Scribe, create two new settings with these values:
Key Value Specification
core.security.authenticationType SHP scribe
core.security.shp.authentication.enabled true scribe

For the Controller, create two new settings with these values:
Key Value Specification
core.security.authenticationType SHP controller
core.security.shp.authentication.enabled true controller

Be sure to restart each application in Tomcat or WebLogic after making these changes in
Controller. With these settings in place you would then only need to have a link to the dashboard
in your portal and users of Scribe and Controller would use the built-in login.jsp pages.

Authentication is Persistent for a session
Once Authenticated, the user’s browser receives stateless tokens conforming to the JSON Web

Token (JWT) standard. One is the “refresh” token which expires at the user’s maximum
timeout and also identifies the increment timeout. The other token is the “access” token

which expires at the user’s increment timeout and is recreated with each API call from the
browser as long as the maximum timeout isn’t past. When a user logs out, token is

cleared from the user’s browser and added to the TOKEN_REVOCATION_MST table.
That table tracks revoked tokens to make sure they cannot be authenticated again.

This time limit has both an incremental and a maximum timeout. If the user continues to be active
with their session, the expiration is extended by a configured increment. This is known as the
timeout increment amount. There is also a maximum period, known as the timeout maximum,

 Degree Works | Technical Guide 5.0.3.1 220

which is measured from the time the user signs on. Either or both of these values can be set to
an unlimited time period.

The primary source for these values is the SHPCFG data. If the “TIMEINC” or “TIMEMAX” verbs
are included in a rule the user qualifies for, then the timeout periods are set from these values.
Otherwise, the values can come from the user’s SHP user record, or one of the groups to which
the user belongs, or from the SHP settings
core.security.passport.timeoutIncrementDefault and
core.security.passport.timeoutMaximumDefault. Which one is used depends on the setting
core.security.passport.timeoutPrecedence and
core.security.passport.timeoutPreference. Refer to the Shp Settings technical
documentation for more information about these settings and how they affect the session timeout
values.

 Degree Works | Technical Guide 5.0.3.1 221

Access Control (Authorization)
Degree Works functionality is defined in terms of “Services”. Every service has a lock, with a
corresponding key or keys. Keys can be organized and assigned into groups. The user’s keyring
is a set of keys which ultimately controls what services are allowed. The user’s keyring is built
during authentication. The user’s keyring is put together based on attributes of the user, and keys
are assigned through rules in SHPCFG or through Controller. Keys can be added or removed
(hence services can be allowed or denied). Keys can be referenced via a group, or individually.

Assigning keys with SHPCFG
The SHPCFG data reside in a SHP setting, core.security.rules.shpcfg, and can be used to
globally assign keys and timeouts at logon.

SHPCFG contains a series of if-statements which assign keys to a user’s keyring based on the
user’s assigned role and other user attributes.

Keys/Keyrings
Each User has a Keyring with one or more keys. These Keyrings are stored in SHPDB and give
access to services. When users are authenticated at the time of logon, they acquire keys that are
both explicitly and implicitly assigned.
Keys are needed to access “locked” Services.
Keys are defined in UCX_SHP078, so you may view the available Keys using Controller or
review “List of Services and associated Keys” in the Services section of this document.
Groups are stored in the SHP_GROUP_MST and can be reviewed via Controller, or in the “List
of standard Groups and Keys” in the Groups section of this document.

Explicit Assignment
Explicit keys are those assigned to an individual by id either through Controller or in SHPCFG.
This method is inefficient for assignments in bulk, but very effective for granular, specific control.

Implicit Assignment
Implicit assignment of keys is accomplished through the use of authorization rules. It is very
efficient for bulk assignments. This is accomplished by edits to SHPCFG, which contains the
rules.

Maintaining SHPCFG

SHPCFG is maintained in Controller in the core.security.rules.shpcfg setting.

SHPCFG is a collection of if-statements which must adhere to specific rules and syntax. The if-
statements in SHPCFG are in the following format:
if (expression) then

 commands

 Degree Works | Technical Guide 5.0.3.1 222

An expression consists of a Code and Value, for example:
if (DGWUSERCLASS = "REG") then

 addgroup = SRNREG # Standard keys for the registrar's office users

 addkey = RSAUDIT # Web service for audit/articulation

Users who have been authenticated are assigned a User Class (DGWUSERCLASS) and are
granted keys based on assignment of groups or specific keys to their User Class. In the above
example, users with User Class of REG will have all keys from the SRNREG group plus the
RSAUDIT key added to his keyring.

There are two types of expression codes; some are available to all users while others are only
available for use with students. Valid expression codes for use with all users are:

• DGWUSERCLASS The USERCLASS assigned during authentication, defined in

UCX_AUD012
• DGWSHPACCID The user’s SHP_ACCESS_ID can be used to explicitly add or remove

keys or groups
• EVERYONE Add or remove keys or groups to all users. This code is unique in that

 it does not require a value, e.g. if (EVERYONE) then

The following expression codes can be coded for students only. During the student extract
process, if configured to do so, the following values will be stored in the SHP_USER_ATTRIB
table which makes this data available to SHPCFG.

• ACTIVETERM RAD_STUDENT_MST.RAD_TERM
• CATALOGYEAR RAD_GOAL_DTL.RAD_CATALOG_YR
• COLLEGE RAD_GOALDATA_DTL.RAD_GOAL_VALUE where

 RAD_GOAL_CODE = COLLEGE
• DEGREE RAD_GOAL_DTL.RAD_DEGREE_CODE
• DEGREESOURCE RAD_GOAL_DTL.RAD_DEGREE_SRC
• MAJOR RAD_GOALDATA_DTL.RAD_GOAL_VALUE where

 RAD_GOAL_CODE = MAJOR
• PROGRAM RAD_GOALDATA_DTL.RAD_GOAL_VALUE where

 RAD_GOAL_CODE = PROGRAM
• SCHOOL RAD_GOAL_DTL.RAD_SCHOOL
• STUDENTLEVEL RAD_GOAL_DTL.RAD_STU_LEVEL
• Custom codes Custom codes, generated by UCX_BAN080 (Banner) or

 custom.client.properties (Colleague) can also be used as SHPCFG
 expressions. For more information on setting up custom codes and
 adding them to SHP_USER_ATTRIB, see the Considerations

 Guide for your Student Information System (SIS).
Valid commands in SHPCFG are as follows. Note that they are not case-sensitive:

• addGroup Adds a group to the user’s keyring
• remGroup Removes a group from the user’s keyring
• addKey Adds a specific key to the User’s keyring
• remKey Removes a specific key from the User’s keyring
• deny Denies access
• timeInc Sets a timeout increment for the User
• timeMax Sets a maximum login time for the User

 Degree Works | Technical Guide 5.0.3.1 223

Expression operators that can be used are:

• = Equal
• <> Not Equal
• > Greater than
• < Less than
• >= Greater than or equal to
• <= Less than or equal to

Expressions can be combined with the conditional operators AND and OR. To ensure the results
you expect, follow the best practice of using parentheses when combining expressions:
If (CODE1 = "VALUEA" or CODE2 = "VALUEB") then

If (CODE1 = "VALUEA" and CODE2 = "VALUEB") then

If (CODE1 = "VALUEA" and (CODE2 = "VALUEB" or CODE3 = "VALUEC")) then

Note that the use of ELSE is not supported, for example the following is not valid:
If (DGWUSERCLASS <> "STU") then

 addkey = SUPPORT # Support

Else # ELSE is not supported!

 addGroup = SRNSTU # Standard keys for students

Instead, code the above logic as follows in separate rules:
If (DGWUSERCLASS <> "STU") then

 addkey = SUPPORT # Support

If (DGWUSERCLASS = "STU") then

 addGroup = SRNSTU # Standard keys for students

In the next example, all students will be granted all keys in the SRNSTU group, but only students
whose RAD_SCHOOL value = ‘UG’ will be granted the keys in the SEPSTUED group, except for
the SEPPDELL key:

if (DGWUSERCLASS = "STU") then
addGroup = SRNSTU # Standard keys for students

if (DGWUSERCLASS = "STU" and SCHOOL = "UG") then
addGroup = SEPSTUED # Planner Edit/Create

remkey = SEPPDELL # Delete Plans

 Degree Works | Technical Guide 5.0.3.1 224

In the following example, the advisors are being assigned the SRNADV group. Advisors are also
been given the SDSTUANY key to allow them to search on any student – we take away the
SDSTUMY key so that advisors are not tied to a specific list of advisees.

If your advisors are tied to certain advisees then the SRNADV group will give you what you need.
If you are bridging students with different TERM values and wish to see all students assigned to
any advisor regardless of TERM value, set the UCX_CFG020 WEBPARAMS active term field to
blanks to ignore the TERM field as part of the search criteria.

if (EVERYONE) then
 TIMEINC = 0055 #55 Minutes of idle time
 TIMEMAX = 0800 #Max 8 hrs before relogon needed
 remKey = SDPLANER, #Remove old planner keys
 remKey = SDPLNMOD
 remKey = SDPLNVEW

#--
#-- DegreeWorks keys for students
#--
if (DGWUSERCLASS = "STU") then
 addGroup = SRNSTU
 addKey = SD2SEPMOD # allow student to modify their own plan

#--
#-- DegreeWorks keys for applicants
#--
if (DGWUSERCLASS = "APP") then
 addGroup = SRNAPP

#--
#-- DegreeWorks keys for advisors
#--
if (DGWUSERCLASS = "ADV") then
 addGroup = SRNADV
 remKey = SDSTUMY # load my advisees only
 addKey = SDSTUANY # allow search on all students

#--
#-- DegreeWorks keys for administrators
#--
if (DGWUSERCLASS = "REG") then
 addKey = SDSOCMIL
 addGroup = SRNREG

The above example also illustrates use of the EVERYONE expression code. Here all users are
assigned timeInc of 0055 and timeMax 0800. These time settings are in the format of hhmm,
where timeInc is set to 55 minutes and timeMax is set to 8 hours. For more information on timeInc
and timeMax, see the User Session Timeout section in this document.

While modifying SHPCFG, feel free to add comments which are preceded with a #. Comments
can be added at the beginning of a line or after the assignment of a key or group, as illustrated
above.

Running shpparse first is good as it will report any errors. Running daprestart (manually or via
Transit) will also run shpparse but you will not see the parse errors. The shpparse script will pull
SHPCFG from the SHP_SETTINGS_MST before attempting to parse it.

After modifying SHPCFG and doing a daprestart you need to restart the java applications in
tomcat or weblogic in order for them to pick up the changes in the SHP_SETTINGS_MST.

 Degree Works | Technical Guide 5.0.3.1 225

Services
Each component of business functionality is a service. Services may be broad (an entire web
page or more) or narrow (a button which does something useful). Services are locked and keys
are needed to access them.

List of Services and associated Keys

TITLE KEYS APPLICATION
All services beginning with "PT" are
standard PC Transit services

Reports (DAP16, DAP22) PTSDGWRE or
PTSHPDGW

PC Transit

RAD Bridge (RAD11) PTSRADPR or
PTSHPRAD

PC Transit -- RAD
only

Transit ADMIN jobs PTSADMIN PC Transit
Transit SCRxx jobs PTSSCRIB PC Transit
Transit Banner Bridge (RAD30) PTSBANPR PC Transit
Transit OPS Bridge (RAD20) PTSOPSPR PC Transit
Transit Colleague Bridge (CLG30) PTSCLGPR PC Transit
Transit AUDIT jobs PTSAUDIT PC Transit
All services beginning with "RS" are
keys to access REST web services in
degreeworks-services deployment

Retreive audit/articulation RSAUDIT Web Service
Retrieve classes by student ID RSCLASS Web Service
Retrieve Mapping through a Web Service RSMAPPNG Web Service
Retrieve Plans through a Web Service RSPLAN Web Service
Retrieve SHP Settings RSSETTNG Web Service
Retrieve validation (UCX) tables RSVALID Web Service
Role for CourseInfo web services RSCRSINF Web Service
Run what-if audit RSWHATIF Web Service
Allows application access to Degree
Works APIs

NOREFER Web Service

All of these services are Dashboard
and Responsive Dashboard services

Financial Aid Audits tab SDAIDAUD Web
Review Financial Aid Audits SDAIDREV Web
Run Financial Aid Audits SDAIDRUN Web
Financial Aid Audit History SDAIDHIS Web
Delete Financial Aid Audits SDAIDDEL Web
Athletic Eligibility Audits tab SDATHAUD Web
Athletic Eligibility Audit History SDATHHIS Web
Review Athletic Eligibility Audits SDATHREV Web
Run Athletic Eligibility Audits SDATHRUN Web
Delete Athletic Eligibility Audits SDATHDEL Web
Admin tab SDADMIN Web
Audits – Worksheets tab SDAUDIT Web
Save as PDF option SDAUDPDF Web
Review Audit SDAUDREV Web
Run Audit SDAUDRUN Web
Delete Academic Audits SDAUDDEL Web
Department user SDDEPART Web
Exp Mgmt Exceptions Search SDEMEXSR Web

 Degree Works | Technical Guide 5.0.3.1 226

TITLE KEYS APPLICATION
Delete applied petitions SDEMPEAD Web
Except Mgmt Petitions Applied SDEMPEAL Web
Except Mgmt Petitions Approved SDEMPEAV Web
Fix petition status SDEMPEFX Web
Delete rejected petitions SDEMPERD Web
Except Mgmt Petitions Rejected SDEMPERJ Web
Except Mgmt Petitions Waiting SDEMPEWA Web
Exceptions SDEXCEPT Web
Add Exception SDEXPADD Web
Delete Exception SDEXPDEL Web
External Links EXTLINKS Responsive

Dashboard
Allows visibility of encrypted Shep settings SHENCRPT Java Applications
Access to turn on and off debugging DEBUG Java Applications
Exeptions – Also Allow EXPALLOW Web
Exceptions – Apply Here EXPAPPLY Web
Exeptions – Change the Limit/ Remove
Course

EXPCHANG Web

Exceptions – Force Complete EXPFORCE Web
Exceptions – Substitute EXPSUBST Web
Exceptions – view details on worksheet EXPVWDTL Web
Exception Management Access SDEXPMGT Web
Student Search SDFIND Web
Student Search by ID SDFINDID Web
GPA Advice Calculator SDGPAADV Web
GPA Calculator SDGPACLC Web
GPA Graduation Calculator SDGPAGRD Web
GPA Term Calculator SDGPATRM Web
Audit History SDHIST Web
Look-ahead audit SDLOKAHD Web
Notes SDNOTES Web
Note Add SDNTEADD Web
Add free-form notes SDNTECHG Web
Delete Note SDNTEDEL Web
Modify Note SDNTEMOD Web
View Note SDNTEVUE Web
Run New Audit after saving note SDNTERUN Web
Petition Add SDPETADD Web
View status of all petitions SDPETALS Web
Petitions delete SDPETDEL Web
Petitions Modify SDPETMOD Web
View status of my petitions SDPETMYS Web
Petition View SDPETVEW Web
Show Refresh date/time (for Banner, also
controls the refresh button)

SDREFRES Web

Refresh Button – Colleague only SDREFBTN Web
Registrar/Any Student – for searching SDSTUANY Web
Student Services SDSTUME Web
My Advisees – for searching SDSTUMY Web
WEB30 Worksheet SDWEB30 Web
WEB31 Worksheet SDWEB31 Web
WEB32 Worksheet SDWEB32 Web
WEB33 Worksheet SDWEB33 Web
WEB34 Worksheet SDWEB34 Web
WEB35 Worksheet SDWEB35 Web
WEB36 Worksheet SDWEB36 Web
WEB37 Worksheet SDWEB37 Web
Financial Aid Report SDWEB50 Web

 Degree Works | Technical Guide 5.0.3.1 227

TITLE KEYS APPLICATION
Aid and Academic Report SDWEB51 Web
Athletic Eligibility Report SDWEB55 Web
Athletic and Academic Report SDWEB56 Web
What-if Audit SDWHATIF Web
What-If History tab SDWIFHIS Web
What-If Delete button on History tab SDWIFDEL Web
DegreeWorks Access SDWORKS Web
Diagnostics Report SDXML30 Web
Class History report SDXML31 Web
Student Data report SDXML32 Web
Class Summary Report SDXML33 Web
Freeze Audits AUDFREEZ Web
Audit Description AUDDESCR Web
What-if Freeze Audits WIFFREEZ Web
What-if Audit Description WIFDESCR Web
Any Student ID is allowed ANYSTUID Web
Advisor’s Advisees only are allowed ADVISIDS Web
Access to Support Features SUPPORT Web
All services beginning with "SEP" are
standard Student Planner services

Create New Plan SEPPADD Planner
Generate audits from within planner SEPPAUD Planner
Permission to "auto approve" a plan SEPPAUTO Planner
Create Block on plan SEPPBLCK Planner
Delete plans SEPPDEL Planner
Delete plans, limited SEPPDELL Planner
Planner tab SEPPLAN Planner
Lock a plan SEPPLOCK Planner
Edit a plan SEPPMOD Planner
Add plan term notes SEPPNMAD Planner
Delete plan term notes created by the
current user

SEPPNMDL Planner

Edit plan term notes created by the
current user

SEPPNMED Planner

Add plan requirement notes SEPPNRAD Planner
Delete plan requirement notes created by
the current user

SEPPNRDL Planner

Edit plan requirement notes created by
the current user

SEPPNRED Planner

Add plan notes SEPPNTAD Planner
Delete plan notes created by the current
user

SEPPNTDL Planner

Edit plan notes created by the current
user

SEPPNTED Planner

Add/Edit plan requirements SEPPRQAD Planner
Delete plan requirements SEPPRQDL Planner
Edit plan requirements SEPPRQED Planner
Override plan pre- and co-requisite
checking

SEPPRQTO Planner

Add/Edit plan terms SEPPTADD Planner
Delete plan terms SEPPTDEL Planner
Edit plan terms SEPPTMOD Planner
Create plan from a template SEPPTEMP Planner
Show the What-If button in Plans SEPPWIF Planner
Create New Template SEPTADD Planner
Delete templates SEPTDEL Planner
Edit templates SEPTEDIT Planner
Template Management functionality SEPTMGMT Planner
Add template term notes SEPTNMAD Planner

 Degree Works | Technical Guide 5.0.3.1 228

TITLE KEYS APPLICATION
Delete template term notes SEPTNMDL Planner
Edit template term notes SEPTNMED Planner
Add template requirement notes SEPTNRAD Planner
Delete template requirement notes SEPTNRDL Planner
Edit template requirement notes SEPTNRED Planner
Add/Edit template requirements SEPTRQAD Planner
Delete template requirements SEPTRQDL Planner
Edit template requirements SEPTRQED Planner
Add template notes SEPTNTAD Planner
Delete template notes SEPTNTDL Planner
Edit template notes SEPTNTED Planner
Change template term scheme SEPTTRMS Planner
Edit the critical indicator on plan and
template requirements

SEPCRIT Planner

Access to internal notes on plans SEPINOTE Planner
Select course choice requirement options
on plans.

SEPPSEL Planner

Edit plan notes created by other users SEPPNTOW Planner
Delete plan notes created by other users SEPPNTGD Planner
Edit plan notes that have been copied
from a template

SEPPNTET Planner

Delete plan notes that have been copied
from a template

SEPPNTDT Planner

Edit plan CHOICE requirement pointer SEPPPTR Planner
View the plan in Edit Mode SEPPEDIT Planner
View the plan in Calendar Mode SEPVCAL Planner
View the plan in Audit Mode SEPVAUD Planner
View the plan in Notes Mode SEPVNOTE Planner
Modify scope field in the Edit view SEPSCOPE Planner
All services below are for Transfer
Equivalency

TreqAdmin audit and API articulation and
audits

SDTREQER Transfer
Equivalency

Transfer Equivalency Admin - access SRNTREQ Transfer
Equivalency

All services below are for Transfer
Equivalency Self-Service application

Transfer Equivalency Self-Service access. DWTESELF Transfer
Equivalency Self-
Service

Transfer Equivalency Self-Service admin DWTEADMN Transfer
Equivalency Self-
Service

All services below enable functionality
in the Transfer Finder application

Transfer Finder Categories from audit TFCATGRY Transfer Finder
Transfer Finder Tab TFFINDER Transfer Finder
Transfer Finder Don’t Display
Acknowledge Message

TFNOACK Transfer Finder

Transfer Finder Transfer Audit TFTRAUDT Transfer Finder
All services below enable functionality
in the Scribe application

Key to access Scribe web application SCRIBE Scribe
Key to access parse API SCRPARSE Scribe
Access to modify all block types SCRBLALL Scribe
Access to modify ATHLETE blocks SCRBLATH Scribe
Access to modify AWARD blocks SCRBLAWR Scribe
Access to modify COLLEGE blocks SCRBLCOL Scribe
Access to modify CONC blocks SCRBLCON Scribe

 Degree Works | Technical Guide 5.0.3.1 229

TITLE KEYS APPLICATION
Access to modify DEGREE blocks SCRBLDEG Scribe
Access to modify ID blocks SCRBLID Scribe
Access to modify LIBL blocks SCRBLLIB Scribe
Access to modify MAJOR blocks SCRBLMAJ Scribe
Access to modify MINOR blocks SCRBLMIN Scribe
Access to modify OTHER blocks SCRBLOTH Scribe
Access to modify PROGRAM blocks SCRBLPRG Scribe
Access to modify REQUISITE blocks SCRBLREQ Scribe
Access to modify SCHOOL blocks SCRBLSCH Scribe
Access to modify SPEC blocks SCRBLSPC Scribe
All services below enable functionality
in the Composer application

Key to access Composer application COMPOSER Composer
All services below enable functionality
in the Controller application

Application Access CONTROL Controller
Access to Users tab CTLUSERS Controller
Access to Add Users CTLUSRAD Controller
Access to Modify Users CTLUSRMD Controller
Access to Delete Users CTLUSRDL Controller
Access to Groups tab CTLGROUP Controller
Access to Add Groups CTLGRPAD Controller
Access to Modify Groups CTLGRPMD Controller
Access to Delete Groups CTLGRPDL Controller
Access to Configuration tab CTLCONF Controller
Access to Add Shepherd Settings CTLSETAD Controller
Access to Modify Shepherd Settings CTLSETMD Controller
Access to Delete Shepherd Settings CTLSETDL Controller
Access to Add UCX Entries CTLUCXAD Controller
Access to Modify UCX Entries CTLUCXMD Controller
Access to Delete UCX Entries CTLUCXDL Controller
Access to UCX Bulk Operations CTLUCXBK Controller
All services below enable functionality
in the Transit application

Transit - Application Access TRANSIT Transit
Transit - Run All Jobs TRANALL Transit
Transit - Access to Run Jobs tab TRANRUN Transit
Transit - Access to SQL select criteria TRANSQL Transit
Transit - Access to delete jobs TRANDEL Transit

Transit - Access to Upload Artifacts TRANART Transit
Access to run ADMIN jobs and scripts TRADMIN Transit
Access to run AUD01 TRAUD01 Transit
Access to run AUD02 TRAUD02 Transit
Access to run BAN62 (Banner clients) TRBAN62 Transit
Access to run the Student Extract
(Colleague clients)

TRCLG30 Transit

Access to run the Advisor Extract
(Colleague clients)

TRCLG31 Transit

Access to run the Staff Extract (Colleague
clients)

TRCLG32 Transit

Access to run the Colleague Course
Extract

TRCLG33 Transit

Access to run the Colleague Validation
Extract (UCX)

TRCLG34 Transit

Access to run the Colleague Transfer
School Extract (ETS)

TRCLG35 Transit

Access to run the Colleague Equivalency TRCLG36 Transit

 Degree Works | Technical Guide 5.0.3.1 230

TITLE KEYS APPLICATION
Extract
Access to run the Colleague Transfer
Equivalency Extract (Mappings)

TRCLG37 Transit

Access to load the *.client.properties files
(Colleague clients)

TRCLG38 Transit

Access to run the DAP16 processor TRDAP16 Transit
Access to run DAP21 TRDAP21 Transit
Access to run DAP22 TRDAP22 Transit
Access to run DAP27 TRDAP27 Transit
Access to run DAP28 TRDAP28 Transit
Access to run DAP54 TRDAP54 Transit
Access to run DAP58 TRDAP58 Transit
Access to run DAP59 TRDAP59 Transit
Access to run the Radbridge Processor
(RAD clients only)

TRRAD11 Transit

Access to run the Student Extract (Banner
clients)

TRRAD30 Transit

Access to run the Advisor Extract (Banner
clients)

TRRAD31 Transit

Access to run the Applicant Extract
(Banner clients)

TRRAD32 Transit

Access to run the Staff Extract (Banner
clients)

TRRAD33 Transit

Access to run the Banner Course Extract TRRAD34 Transit
Access to run the Banner Curriculum
Rules Extract

TRRAD35 Transit

Access to run the Banner Validation
Extract (UCX)

TRRAD36 Transit

Access to run the Banner Transfer School
Extract (ETS)

TRRAD37 Transit

Access to run the Banner Equivalencies
Extract

TRRAD38 Transit

Access to run the Banner Transfer
Equivalency Extract (Mappings)

TRRAD39 Transit

Access to run SCR02 TRSCR02 Transit
Access to run SCR05 TRSCR05 Transit
Access to run SCR06 TRSCR06 Transit
Access to run SCR07 TRSCR07 Transit
Access to run SCR08 TRSCR08 Transit
Access to run SCR09 TRSCR09 Transit
Access to run SCR10 TRSCR10 Transit
Access to run SCR11 TRSCR11 Transit
Access to run SCR91 (test for Banner
Prerequisite)

TRSCR91 Transit

Access to run SCR92 (test for Banner
Prerequisite)

TRSCR92 Transit

Access to run SCR93 TRSCR93 Transit
Access to run SCR94 TRSCR94 Transit
Access to run SCR95 TRSCR95 Transit
Access to run UCX01 TRUCX01 Transit

+360

Groups
A User Class will typically have a Group of Keys assigned. These groups are stored in SHPDB
and can be viewed and modified using Controller. A user will inherit the group keys from their
user-class, which will be combined with other keys they may acquire from SHPCFG, or those
assigned through Controller.

 Degree Works | Technical Guide 5.0.3.1 231

The Keys assigned to a Group can be modified via Controller. See the Controller Administrative
Guide for more information.

List of standard Groups and associated Keys
GROUP KEYS
CONTROL CONTROL, CTLUSERS, CTLUSRAD, CTLUSRMD, CTLUSRDL, CTLGROUP,

CTLGRPAD, CTLGRPMD, CTLGRPDL, CTLCONF, CTLSETAD, CTLSETMD,
CTLSETDL, CTLUCXAD, CTLUCXMD, CTLUCXDL, CTLUCXBK

SCRIBAEA SCRIBE, SCRPARSE, SCRBLATH
SCRIBAID SCRIBE, SCRPARSE, SCRBLAWR
SCRIBREG SCRIBE, SCRPARSE, SCRBLALL
SEPADV RSCRSINF, RSPLAN, RSSETTNG, SEPCRIT, SEPINOTE, SEPPADD, SEPPAUD,

SEPPBLCK, SEPPDEL, SEPPEDIT, SEPPLOCK, SEPPMOD, SEPPNMAD, SEPPNMDL,
SEPPNMED, SEPPNRAD, SEPPNRDL, SEPPNRED, SEPPNTAD, SEPPNTDL,
SEPPNTED, SEPPPTR, SEPPRQAD, SEPPRQDL, SEPPRQED, SEPPSEL,
SEPPTADD, SEPPTDEL, SEPPTEMP, SEPPTMOD, SEPPWIF, SEPVAUD, SEPVCAL,
SEPPLAN, SEPSCOPE, SEPVNOTE

SEPREG RSCRSINF, RSPLAN, RSSETTNG, SEPCRIT, SEPINOTE, SEPPADD, SEPPAUD,
SEPPAUTO, SEPPBLCK, SEPPDEL, SEPPEDIT, SEPPLOCK, SEPPMOD, SEPPNMAD,
SEPPNMDL, SEPPNMED, SEPPNRAD, SEPPNRDL, SEPPNRED, SEPPNTAD,
SEPPNTDL, SEPPNTDT, SEPPNTED, SEPPNTET, SEPPNTGD, SEPPNTOW,
SEPPPTR, SEPPRQAD, SEPPRQDL, SEPPRQED, SEPPRQTO, SEPPSEL,
SEPPTADD, SEPPTDEL, SEPPTEMP, SEPPTMOD, SEPPWIF, SEPSCOPE, SEPTADD,
SEPTDEL, SEPTEDIT, SEPTMGMT, SEPTNMAD, SEPTNMDL, SEPTNMED,
SEPTNRAD, SEPTNRDL, SEPTNRED, SEPTNTAD, SEPTNTDL, SEPTNTED,
SEPTRQAD, SEPTRQDL, SEPTRQED, SEPTTRMS, SEPVCAL, SEPPLAN, SEPVAUD,
SEPVNOTE

SEPSTUED RSCRSINF, RSPLAN, RSSETTNG, SEPPADD, SEPPAUD, SEPPDELL, SEPPMOD,
SEPPNMAD, SEPPNMDL, SEPPNMED, SEPPNRAD, SEPPNRDL, SEPPNRED,
SEPPNTAD, SEPPNTDL, SEPPNTED, SEPPRQAD, SEPPRQDL, SEPPRQED,
SEPPTADD, SEPPTDEL, SEPPTEMP, SEPPTMOD, SEPPWIF, SEPVCAL, SEPVNOTE,
SEPPEDIT, SEPPLAN, SEPVAUD

SEPSTUVW RSCRSINF, RSPLAN, RSSETTNG, SEPPAUD, SEPVCAL, SEPVNOTE, SEPPLAN,
SEPPSEL, SEPVAUD

SRNADV ADVISIDS, EXPALLOW, EXPAPPLY, EXPCHANG, EXPCHANGE, EXPFORCE,
SDAUDPDF, SDAUDRUN, SDEXCEPT, SDEXPADD, SDEXPDEL, SDFIND,
SDGPAADV, SDGPACLC, SDGPAGRD, SDGPATRM, SDLOKAHD, SDNOTES,
SDNTEADD, SDNTECHG, SDNTEDEL, SDNTEMOD, SDNTERUN, SDNTEVUE,
SDPLNAUD, SDPLNDEL, SDSEP, SDSEPMOD, SDSTUANY, SDWEB31, SDWEB36,
SDWHATIF, SDWIFDEL, SDWIFHIS, SDWORKS, SDXML31, WIFDESCR, WIFFREEZ,
SDAUDREV, EXTLINKS

SRNADVX ADVISIDS, EXPALLOW, EXPAPPLY, EXPCHANG, EXPCHANGE, EXPFORCE,
SDAUDPDF, SDAUDRUN, SDFIND, SDGPAADV, SDGPACLC, SDGPAGRD,
SDGPATRM, SDLOKAHD, SDNOTES, SDNTEADD, SDNTECHG, SDNTEDEL,
SDNTEMOD, SDNTERUN, SDNTEVUE, SDPETADD, SDPETMOD, SDPETMYS,
SDPETVEW, SDPLNAUD, SDPLNDEL, SDSEP, SDSEPMOD, SDSTUANY, SDWEB31 ,
SDWEB36, SDWHATIF, SDWIFDEL, SDWIFHIS, SDWORKS, SDXML31, SEPETDEL,
WIFDESCR, WIFFREEZ, SDAUDREV, EXTLINKS

SRNAID ANYSTUID, AUDDESCR, AUDFREEZ, AWARD, SDAIDDEL, SDAIDHIS, SDAIDREV,
SDAIDRUN, SDAUDPDF, SDFIND, SDSTUANY, SDWEB50, SDWEB51, SDWEB52,
SDWORKS,SDAIDAUD, EXTLINKS

SRNAPP SDAUDPDF, SDLOKAHD, SDSTUME, SDWEB31, SDWHATIF, SDWORKS, SDXML31,
SDAUDREV, EXTLINKS

 Degree Works | Technical Guide 5.0.3.1 232

SRNATHL ANYSTUID, ATHLETE, AUDDESCR, AUDFREEZ, SDATHDEL, SDATHHIS, SDATHREV,
SDATHRUN, SDAUDPDF, SDFIND, SDSTUANY, SDWEB55, SDWEB56, SDWORKS,
SDXML30, SDXML33, SDATHAUD, EXTLINKS

SRNREG ANYBLOCK, ANYSTUID, AUDDESCR, AUDFREEZ, EXPALLOW, EXPAPPLY,
EXPCHANG, EXPCHANGE, EXPFORCE, PSDGWSHP, PTSADMIN, PTSAUDIT,
PTSDGWRE, PTSRADPR, PTSSCRIB, SCBULK, SDADMIN, SDATHAUD, SDATHDEL,
SDATHHIS, SDATHREV, SDATHRUN, SDAUDDEL, SDAUDPDF, SDAUDREV,
SDAUDRUN, SDEMEXSR, SDEMPEAD, SDEMPEAL, SDEMPEAV, SDEMPEFX,
SDEMPERD, SDEMPERJ, SDEMPEWA, SDEXCEPT, SDEXPADD, SDEXPDEL,
SDEXPMGT, SDFIND, SDGPAADV, SDGPACLC, SDGPAGRD, SDGPATRM, SDHIST,
SDLOKAHD, SDNOTES, SDNTEADD, SDNTECHG, SDNTEDEL, SDNTEMOD,
SDNTERUN, SDNTEVUE, SDPLNAUD, SDPLNDEL, SDSEP, SDSEPAPP, SDSEPMOD,
SDSTUANY, SDTMP, SDWEB30, SDWEB31, SDWEB32, SDWEB34, SDWEB35,
SDWEB36, SDWEB37, SDWEB55, SDWEB56, SDWHATIF, SDWIFDEL, SDWIFHIS,
SDWORKS, SDXML30, SDXML31, SDXML32, SDXML33, SUPPORT, WIFDESCR,
WIFFREEZ,PSDGWSTD, SDWEB33, EXTLINKS

SRNSTU SDAUDPDF, SDGPAADV, SDGPACLC, SDGPAGRD, SDGPATRM, SDLOKAHD,
SDPLNVEW, SDSEP, SDSTUME, SDWEB31, SDWEB36, SDWHATIF, SDWORKS,
SDXML31, SDAUDREV, EXTLINKS

TFADV TFCATGRY, TFNOACK, TFTRAUDT, TFFINDER
TFREG TFCATGRY, TFNOACK, TFTRAUDT, TFFINDER
TFSTU TFCATGRY, TFTRAUDT, TFFINDER
TRANBAN TRBAN62, TRRAD30, TRRAD31, TRRAD32, TRRAD33, TRRAD34, TRRAD35,

TRRAD36, TRRAD37, TRRAD38, TRRAD39, TRSCR91, TRSCR92, TRSCR93,
TRSCR94, TRSCR95

TRANCLG TRCLG30, TRCLG31, TRCLG33, TRCLG34, TRCLG36, TRCLG37, TRCLG38,
TRCLG39, TRCLG40

TRANREG TRANSIT, TRANRUN, TRANSQL, TRANDEL, TRADMIN, TRAUD01, TRAUD02,
TRDAP16, TRDAP21, TRDAP22, TRDAP27, TRDAP28, TRDAP54, TRDAP58,
TRDAP59, TRRAD11, TRSCR02, TRSCR05, TRSCR06, TRSCR07, TRSCR08,
TRSCR09, TRSCR10, TRSCR11, TRUCX01

Users
Authenticated users may request services based on their user-class assignment. User-class
assignment associates the user with similar users for the purpose of controlling read-write access
to notes and access to menu options in Degree Works. User-class is sent to Degree Works on
the SHPU record when each user is loaded via the bridge. For Banner clients this is handled by
the Banner extracts and their associated configuration tables. See the Banner Considerations
Guide for additional information.

User Class
The valid user class codes are stored in UCX_AUD012. The user class determines which
shp_group (collection of keys) is granted to the user, thereby determining which services the user
can access.

The user-class is stored in the SHP_USER_MST in DAPDB. A user can have only one user
class.

The following set of groups is normally assigned in SHPCFG based on the user-class:

User Class Description Group (shp_group_mst)
ADV Advisor SRNADV, SEPADV, TFADV

 Degree Works | Technical Guide 5.0.3.1 233

ADVX Advisor without exceptions SRNADVX, SEPADV
AID Financial Aid Office SRNAID, SCRIBAID
APP Applicant SRNAPP, SEPSTUVW or

SEPSTUED, TFSTU
ATHL Athletic Department SRNATHL, SCRIBAEA
REG Registrar SRNREG, SEPREG, TFREG,

SCRIBREG
STU Student SRNSTU, SEPSTUVW or

SEPSTUED, TFSTU

Creating a new User Class
Degree Works uses the concept of a User Class to identify a user as having certain privileges.

1. Use Controller to create the new user-class in UCX_AUD012 (code can be up to 4 bytes

long).
Use the Copy function in Controller to copy the REG record and make changes.

2. Modify SHPCFG to assign or remove whatever keys you want to this user-class:
 if (DGWUSERCLASS = "ABCD") then

 AddKey = SCRIBE # Scribe

 RemKey = SDFIND # disallow Find button

Important notes

1. Remember to do a daprestart after modifying SHPCFG.
2. You don't have to create a Shepherd group for your new user-class as you will be

controlling access using SHPCFG.
3. After creating the user-class you can then bridge users with the new user-class.

Ellucian does not recommend creating new user-classes. It is best to use the user-
classes provided.

Granting User Access to Degree Works

Granting access to Scribe

Scribe is used to maintain degree requirements. Typically, only a few staff members in the
Registrar's office are granted access to Scribe.
Users need the SCRIBE and SCRPARSE keys to access Scribe. Additionally, users will need
the keys for the block types they have access to modify. Most users can be given SCRBLALL,
which grants access to modify all block types. Users with limited access should be given the keys
for the appropriate block type(s):

SCRBLATH – ATHLETE blocks
SCRBLAWR – AWARD blocks
SCRBLCOL – COLLEGE blocks
SCRBLCON – CONC blocks
SCRBLDEG – DEGREE blocks
SCRBLID – ID blocks
SCRBLLIB – LIBL blocks
SCRBLMAJ – MAJOR blocks
SCRBLMIN – MINOR blocks
SCRBLOTH – OTHER blocks
SCRBLPRG – PROGRAM blocks

 Degree Works | Technical Guide 5.0.3.1 234

SCRBLREQ – REQUISITE blocks
SCRBLSCH – SCHOOL blocks
SCRBLSPC – SPEC blocks

Granting access to Transfer Equivalency

Transfer Equivalency is used to process transfer equivalence and articulation. There are two
components – Transfer Equivalency Self Service and Transfer Equivalency Admin.

Transfer Equivalency Self Service allows transfer prospects to map courses between their old
school and yours.

The DWTESELF key is required to access Transfer Equivalency Self Service.

Transfer Equivalency Admin is an administrative tool to manage mappings and transfers.
Typically, only a few staff members in the Registrar's office are granted access to Transfer
Equivalency. The SRNTREQ key is required to access Transfer Equivalency Admin.

Granting access to Controller
Controller is used to maintain the codes and configuration settings that control the behavior of
Degree Works. Typically, only a few staff members in the Registrar's or Information Technology
office are granted access to Controller.

The CONTROL group should be given to these users to full access in Controller. However,
individual keys can instead be added as needed for those who should be given limited access.

Granting access to Transit
Transit users are those typically in the Registrar’s Office and the IT team. The TRANREG group
should be given to these users to access the full list of reports and processors. However,
individual keys can instead be added as needed for those who should be given limited access.

Banner schools:

In addition to the TRANREG group Banner schools should also give their users the TRANBAN
group to gain access to the Banner-specific processors.

Colleague schools:

In addition to the TRANREG group Colleague schools should also give their users the TRANCLG
group to gain access to the Colleague-specific processors.

Granting access to the Dashboard
Degree Works on the Web does not require installation of software on your PC other than your
standard Web Browser (IE, Firefox or Safari). Degree Works on the Web provides access to
many different services intended for use by various user classes. Typically, all students,
advisors, faculty, deans, department heads, and Registrar's staff are granted access to the
Dashboard.

 Degree Works | Technical Guide 5.0.3.1 235

Access to the specific services is granted via specific keys. The keys are granted to
administrators, staff, faculty, advisors, students and Registrar based on the user class assigned
in SHPCFG.

Anyone accessing Degree Works Dashboard must have the “SDWORKS” key.

Granting access to Web Notes
Besides the keys listed above to control access to web notes, a special combination of keys
controls whether a user can modify any student’s notes or only their own notes. The combination
of keys SDSTUME and SDNTEMOD restricts a student to modifying only the notes that they
created themselves. Advisors and REG need to be given SDNTEMOD only (without SDSTUME)
in order to update any student's notes.

Granting access to see Advisees’ records
Non-student users can be granted access to student records using a variety of keys. The three
main categories of such users are:

Registrar – access to any student’s records
Advisor – access to any advisee records
Department head – access to records of students in one or more departments

However, some advisors may need to be setup so that their advisees are loaded once the advisor
connects but the advisor can then choose to open up any student on campus. Mixing these
categories is possible using the right combination of keys.

These are the primary keys that correspond to the three categories above:
SDSTUANY user can access any student’s records
SDSTUMY user can access advisees (user’s ID is on rad_goalData_dtl of students)
SDDEPART user can access students in specified departments/majors (advisee filters on the
user’s shp_user_mst)

Additional keys can be given to these three users if the user is allowed to access any student.
Usually if you give one of these keys you also give the other.
SDFINDID The ID search field on the main page is enabled
SDFIND The Find button on the main page is enabled

Example setup scenarios:
Registrar user – access to any student
 SDSTUANY
 SDFINDID
 SDFIND
Advisor user – advisees only
 SDSTUMY
Advisor user – advisees are loaded but user can then search on any student
 SDSTUMY
 SDFINDID
 SDFIND
Department head – access to Political Science department only

 Degree Works | Technical Guide 5.0.3.1 236

 SDDEPART
Department head (senior) – access to Business department but can also access any student’s
record
 SDDEPART
 SDFINDID
 SDFIND
Advisor / Dept head - access to advisees but can also access students in the Chemistry
department
 SDSTUMY
 SDDEPART
Advisor / Dept head (senior) - access to advisees, students in the History dept and also any
student
 SDSTUMY
 SDDEPART
 SDFINDID
 SDFIND
Users with the SDSTUMY key will see their advisees loaded in the Name drop-down list as soon
as they connect to Degree Works.
Users with the SDDEPART key will see the students in their departments loaded in the Name
drop-down list as soon as they connect to Degree Works.
Users with both the SDSTUMY and the SDDEPART key will see the advisees and the
departmental students combined together, listed alphabetically, in the Name drop-down list.
These advisor and department head users that also have the SDFIND and SDFINDID keys can
then choose to search on any student. However, once the target student(s) is found that
student(s) will be loaded in to the Name drop-down list replacing the advisee or departmental
students.
If the advisor or department head user then wishes to reacquire their list of advisees or
departmental students the user must reconnect to Degree Works.

For added extra security, additional keys are needed that have no effect on the user interface.
ANYSTUID – give to users who are allowed to view/edit any student’s record; department heads
also need this key
ADVISIDS – give to users who are only allowed to view/edit their advisee records

Here is the complete list of keys for non-student access:
 SDSTUANY
 SDSTUMY
 SDDEPART
 SDFINDID
 SDFIND
 ANYSTUID
 ADVISIDS

For setting up department heads please review the Additional Advisee Filtering section.

 Degree Works | Technical Guide 5.0.3.1 237

Database Privileges
We recommend that you give the Degree Works database user account DBA privileges while you
are processing an update, to avoid any complications. However, once the update is complete,
you may choose to restrict the account to the following minimum required privileges:

grant create table to dwschema;

grant unlimited tablespace to dwschema;

grant create session on dwschema;

alter user dwschema quota unlimited on dgw;

alter user dwschema quota unlimited on pseudotemp;

grant SELECT_CATALOG_ROLE to dwschema;

If your user account is something other than dwschema, replace it in the commands listed above.

Encrypted Data
The following data is stored in an encrypted form in the database.

Shepherd User Passwords

For users defined in the native Shepherd user database, the passwords can be optionally stored
in an encrypted format. This can be enabled in Controller in the UCX CFG020 record with a key
of WEBPARAMS. Set the “Encrypt Password” field to “Y”. If this field is modified, then all
passwords must be reset. The encryption is a one-way digest using the SHA-1 algorithm. The
password cannot be decrypted.

Shepherd Settings

There are several settings configured in the database that contain sensitive information, such as
passwords. These settings are encrypted as they are maintained using Controller. The settings
that are encrypted are listed in the Degree Works Configuration Technical Guide. The encryption
is a 2-way (symmetric) encryption using a 128-bit AES block cypher. This means that the clear
text unencoded value can be viewed in Controller. In order to view and edit these values, the user
must be assigned an access key of SHENCRPT. Without this key, the encrypted entries will not
be displayed in Controller. Before editing any encrypted entry, you must first enter the encryption
key. This is stored in the core.shpSetting.encryptionKey setting. This entry is not encrypted
and can only be seen or edited only by someone with the SHENCRPT key.

If any password is modified, the applications that rely on that setting should be restarted.

 Degree Works | Technical Guide 5.0.3.1 238

System Administration

Communication with Degree Works exists in three ways:

Over the Web: Users talk to Degree Works using their browser

Batch jobs: A small pool of staff run maintenance jobs on the classic server.

System upkeep: On a nightly or weekly basis certain commands are run to keep Degree Works
running

Degree Works Flow Diagram

 Degree Works | Technical Guide 5.0.3.1 239

Degree Works Web Applications
The following is a step-by-step description of the operation of a Degree Works Web session, and
the fulfillment of a service request.

The Java Application Server houses either Tomcat or Weblogic, which serves the role as the
HTTPD Web Server and usually runs on its own machine.

Request-Response Flow through the Java Application Server and
Classic Server

1. When the user clicks a button in their browser a request is sent to the Java application
server.

2. The Java application server passes the request to the dashboard.
3. The dashboard passes the request over a RabbitMQ message queue to the web07

daemons on the classic server.
4. The next free web07 daemon takes the request from the queue and then calls the

scripter subroutine to process the request.
5. The scripter handles the request and then passes the completed script back through the

RabbitMQ message queue.
6. The dashboard reads the message queue response and hands it off to the Java

application server.
7. The Java application server obtains the output from the dashboard servlet and passes it

back to the browser.

Request-Response Flow through the Java Application Server
The newer Degree Works applications, such as Scribe, are run through the Java Application
Server and mostly do not flow through the classic server. The user’s browser is communicating
directly to the Java application server.

1. When the user clicks a button in their browser a request is sent to the Java application
server.

2. The Java application server may communicate directly with the database or it may send a
request to the classic server as explained above.

Several places exist where a timeout may occur while waiting for a response:

Java App Server: On the Java Application Server, Tomcat or WebLogic might timeout waiting

for a response from the Degree Works classic server.

Request-Response Flow through Transit
Please refer to the Request-Response Flow through Transit section in the Transit Administration
Guide.

 Degree Works | Technical Guide 5.0.3.1 240

RabbitMQ
Degree Works uses RabbitMQ, an open source message brokering software that implements the
Advanced Message Queuing Protocol (AMQP), to communicate between processes running on
the same or on different servers. For information on installing and using RabbitMQ, please visit
http://www.rabbitmq.com.

Two RabbitMQ software components must be installed for this communication to function:

RabbitMQ server: installed on any single Unix or Windows machine; must be running at
all times

RabbitMQ client: installed on the classic server; the Degree Works software makes calls
into the RabbitMQ C library to communicate with the server

The RabbitMQ software allows applications to communicate as shown in this diagram.
The Java applications communicate with each other via the RabbitMQ Server and also
communicate with the classic daemons via the RabbitMQ Server and with the classic
daemons using the RabbitMQ Client to read from and write to the server.

The following settings are required for configuring RabbitMQ in an environment. The bolded
settings must be unique for each environment.

classicConnector.amqp.channelCacheSize

classicConnector.amqp.exchange
classicConnector.amqp.timeout

core.amqp.broadcast.heartbeatSeconds

core.amqp.exchange.shpSettings
core.amqp.exchange.ucx
core.amqp.broker.host

core.amqp.broker.port

http://www.rabbitmq.com/

 Degree Works | Technical Guide 5.0.3.1 241

core.amqp.password

core.amqp.username

core.amqp.virtualHost

Information about the settings required for RabbitMQ can be found in the Shepherd Settings
documentation.

On the machine where RabbitMQ server is installed you can use the rabbitmqctl tool to monitor
the queues and verify everything is fully operational. Helpful rabbitmqctl commands include:

rabbitmqctl stop_app

rabbitmqctl start_app

rabbitmqctl status

rabbitmqctl report

rabbitmqctl list_queues -p /

You may also use “service rabbitmq-server status” to get some valuable information; the stop and
start options works also as well as restart.

As always, you may need to use “sudo” to run these commands if you are not the root user on
that machine.

The rabbitmqctl tool documentation is located here:
https://www.rabbitmq.com/man/rabbitmqctl.1.man.html

Degree Works and Your Student Data

https://www.rabbitmq.com/man/rabbitmqctl.1.man.html

 Degree Works | Technical Guide 5.0.3.1 242

This diagram provides a step-by-step description of the operation of bridging your records to
Degree Works. This flow is used by non-Banner, non-Colleague schools that write their own
extract program and use RAD11 to bridge data into Degree Works.

Although this diagram shows your Student System living on a different machine than that where
Degree Works resides, both systems may be on the same machine.

Banner schools should refer to the Banner Considerations Technical Guide.
Colleague schools should refer to the Colleague Considerations Technical Guide.

Request-Response Flow

Bridge Method #1 – batch loading of student and other data on a nightly basis
1. Your Extract Program reads from your Student Records System and writes the data to

one or more data files.

2. The data files are FTP'd to the Degree Works system.

3. The RAD11 batch program is run pointing to the specific BIF file to be loaded.

4. RAD11 removes all data from the RAD database for a given ID and inserts the new,
bridged data.

Bridge Method #2 – used for dynamically sending data for one student
1. Your program pushes data to the RAD08 Bridge Listener. The program may be asked to

send this data because of change to student data within or outside of the context of a
user accessing Degree Works.

2. The RAD08 Bridge Listener receives the student data and writes it to the Degree Works
database.

3. After RAD08 returns a FINISHED message, your program may proceed with sending a
run audit request to Degree Works to be sure the latest audit for the student reflects the
data changes.

Maintaining Degree Works
Degree Works software requires that certain system management tasks be performed on a
regular basis. Some critical tasks must be restarted after a system failure. Other tasks need to be
done on a regular daily, weekly, monthly, or yearly basis. And still other tasks must be performed
as needed.

This section is a checklist of the system management tasks associated with the Degree Works
software package. Please make sure your system manager has a copy of this document.

Restarting Applications
There are times when you will need to restart the Degree Works applications. You can restart the
daemons running in classic by running webrestart and daprestart in Transit or by running those

 Degree Works | Technical Guide 5.0.3.1 243

commands directly on the classic server’s Unix console. To restart the Java applications you
need to restart them in Tomcat or WebLogic.

When you make changes to UCX records via Controller or if you bridge in new UCX values, you
do not need to restart any of the applications. Messages are broadcast over RabbitMQ to notify
each of the applications of a change to the UCX. The software recognizes the changes and acts
appropriately when new requests are received.

When you make changes to Shepherd Settings via Controller, save some exceptions, you do
not need to restart any of the applications. Messages are broadcast over RabbitMQ to notify each
of the applications of a change to the settings. The software recognizes the changes and acts
appropriately when new requests are received. However, when you make changes to these
settings you will need to restart the classic and Java applications:

articulation.*
classicConnector.amqp*
core.amqp.*
core.apiClient.*
core.security.authenticationType
core.security.cas.*
core.security.externalAccessManager.*
core.security.ldap.*
core.security.passport.*
core.security.password*
core.security.saml.*
core.security.shp*

When you make changes to Shpscripts via Composer you do not need to restart the classic
daemons. The web07 daemons recognize when any shpscript has changed and will reread the
shpscript from the database when a new request is received from the dashboard.

When you make changes to properties via Composer you do not need to restart the Java
applications. The properties will be refreshed by the applications after about 20 seconds.
However; a user currently logged into the application may need to sign out and sign on again
before the changes will be visible.

Cron setup for Degree Works
Clients can configure cron to schedule reports or processes to run on a daily basis. This is most
simply done by scheduling a script to run in cron, where the script runs your daily processes.

As the Degree Works administrative user, save your daily maintenance script on your classic
server and configure cron to run it. Use the crontab -e command to create or update cron.

$ crontab –e
Run daily extract and maintenance jobs at 2:00 am on weekdays
0 2 * * 2-6 /home/dwadmin/cron/NightlyMaintenance.sh

In the example daily maintenance script below, a file named dw_maint_yymmdd.log will be
created to contain messages from each process that is to be run. You must create the directory to
contain these log files, e.g. /home/dwadmin/cron/logs.

Be sure to modify the path to the dwenv and dwenv.config scripts, so that the Degree Works
environment is sourced and all of the scripts and processors can be located.

 Degree Works | Technical Guide 5.0.3.1 244

If you wish to run your student extract job via cron, you will need to run launchjob and provide a
Transit parameter file in JSON format. For more information please see the launchjob section in
the Transit Administration Guide and either the Banner Considerations, Colleague Considerations
or, for other schools, the Bridge Inface Format Technical Guide.

#!/usr/bin/ksh

Run this script daily via cron

Source the Degree Works environment

. /dworks/app/scripts/dwenv /dworks/dwenv.config

create log file and name with date

export LOGFILE="/home/dwamin/cron/logs/`/bin/date +dw_maint_%y%m%d.log`"

echo "Starting daily extracts" >$LOGFILE

date >>$LOGFILE

echo "Running student extract via transit" >>$LOGFILE

launchjob $ADMIN_HOME/myjobs/rad30Stu.json >>$LOGFILE 2>&1

echo "Daily extracts are complete" >>$LOGFILE

remove all output older than 7 days

rmoldfiles $ADMIN_HOME/dgwspool 7 >> $LOGFILE

rmoldfiles $ADMIN_HOME/logdebug 7 >> $LOGFILE

rmoldfiles $ADMIN_HOME/jobdata 7 >> $LOGFILE

echo "Restarting dap daemons" >> $LOGFILE

daprestart >> $LOGFILE

echo "Restarting web daemons" >> $LOGFILE

webrestart >> $LOGFILE

email the logfile results

mailx -s DW_extract_results admin@mySchool.edu < $LOGFILE

After System Failure
It is recommended that these tasks be accomplished after a system failure. It is suggested that
you add appropriate symlinks in your /etc/rc3.d directory (or wherever is appropriate for your
operating system) to the dw* scripts in the /etc/init.d directory so that the Degree Works daemon
processes startup when your machine is booted. Only create symlinks for the daemons you want
started. For example, if you are not using the Banner prerequisite daemons then do not create a
symlink do the dw*.preq script in /etc/init.d.

 Degree Works | Technical Guide 5.0.3.1 245

You will need to execute the .profile in the same shell.

Launch other regularly scheduled Degree Works jobs.

Some Degree Works jobs are scheduled to run on a regular basis and should be launched if they
are not in the job queue after recovery from a system failure. Your users may have other such
jobs (the Bridge program), or you may have regular system management jobs (the backup) that
need to be launched after the machine is restarted.

OS change or recompiling in 64-bit
When you want to create a new Degree Works environment on another machine you may lose
your audit history. When the source machine has a different OS from the target machine the
historic audits created on the source machine and stored in the database cannot be accessed on
the target machine. For example, if you are setting up a new production environment on Linux
and your old production machine was Sun Solaris then those audits that were created on Sun
Solaris cannot be viewed in the new environment on Linux. These historic audits are essentially
lost. This same issue occurs if audits were created in one environment compiled in 32-bit and an
attempt is made to access the audit from a 64-bit environment – even if the OS is the same in
both environments. If you are considering creating a new 64-bit production environment or simply
want to now recompile your current environment in 64-bit mode you need to be aware that
historic audits will be lost. (The same is true if you are switching from 32-bit to 64-bit.)

Unlike with audits, your Scribe blocks are safe when moving to a new OS or are recompiling in
64-bit mode. The only wrinkle here is that you need to delete the contents of your admin/daptrees
directory in the new environment (or before recompiling in 64-bit mode) and run a dap16all.

Daily Tasks
1. Check disk space for free space and fragmentation.

2. Run webrestart and daprestart as part of the nightly job. Also run preqrestart and

radrestart if you are using them. If you are always wanting CPA data to be generated for
new audits run resstop before running the bridge/extract and resstart when it is done.

3. Run student extract. See the Cron setup section above.

4. Other daily jobs.

a. Some Degree Works jobs are scheduled to run on a regular basis and should be

launched if they are not in the job queue. Your users may have other such jobs
(the Bridge program), or you may have regular system management jobs (the
backup) that need to be launched.

5. Check execution reports for Degree Works jobs.

Examine the .log files in the admin/logdebug directory for the daemons. Use
Transit to examine the jobs that were launched.

 Degree Works | Technical Guide 5.0.3.1 246

7. A daily partial backup (data only) of the Production account is important for safety and
recovery.

If you would like advice on when to schedule partial or full backups, please contact Ellucian.

Monthly Tasks
Copy test data from databases in Production to TEST environment using a database tool.

Note: You may not want to copy all audits (and associated CPA data) from Production to TEST,
as that data is not needed in TEST and it is a lot of data to copy. You should consider excluding
these tables from your copy process: dap_audit_dtl, dap_audtree_dtl, dap_result_dtl,
dap_resclass_dtl, dap_resnoncr_dtl.

The following steps need to be executed after copying your data into TEST:

• Copy the files from daptrees in Production to TEST, overwriting those in TEST.

If you don’t want to keep the production notes and exceptions in TEST you can remove the
contents of these tables: dap_note_txt_dtl, dap_note_dtl and dap_except_dtl

Remove old rad_log_dtl records using the dapdelradlogs script:
 $ dapdelradlogs 20101231

All records created prior to the date specified are deleted. In this example records created before
December 31, 2010 are deleted. This script should be run about once a month to help clean up
the Degree Works tablespace.

Semi-Yearly/Yearly Tasks
Update the “current” term used as the default.

Change the Current Term in UCX-CFG020 WEBPARAMS.

This should be done whenever the “bridged” term changes. This term is used as the default.

Patching Code between Releases
Sometimes you may encounter problems and require an immediate fix from the ActionLine. When
you are provided with a new file with the fix you should archive your existing file using the
“archive” script.

For example, if the ActionLine gives you a new version of dap43s.c you should first archive your
old file by doing one of the following:

$ cd c
$ archive dap43s.c
Or

$ archive $DGWHOME/src/c/dap43s.c

The archive script will copy the file into the $DGWHOME/archive directory keeping the same
directory structure (archive/src/c in this case). It is important to archive your existing version in

 Degree Works | Technical Guide 5.0.3.1 247

case the new version you receive has bigger problems and you need to revert back to your
archived version.

At any time you can view your archived files by doing the following:
$ ll –R $DGWHOME/archive

The archive script cannot be not used to archive files under $LOCAL_HOME or $ADMIN_HOME
– it can only be used to archive files under $DGWHOME.

As Needed Tasks

Miscellaneous

1) Process Degree Works updates
Degree Works updates are NOT optional. If you do not process the updates then your software
becomes increasingly outdated. At some point, Ellucian will stop supporting old versions of
Degree Works at your site if you have received an update but not processed it.

2) Add Degree Works users
When personnel turnover takes place, you may need to add a new user for the Degree Works
system. Instructions for adding new users are in this document. Consult that section for the
details of how to add a Degree Works user. Ellucian strongly recommends that the user be added
first into the TEST account and then, after testing and training, be added into the Production
account.

3) Transfer blocks between two different environments

Transferring blocks between environments consists of three steps:
• Use dapblockunload to unload tables relating to Scribe blocks
• Use dapblockload to load the tables relating to Scribe blocks
• Run DAP16 to reparse your new set of blocks

Use dapblockunload to unload tables relating to Scribe blocks
You can specify that all blocks be unloaded, just the RA blocks or just the RB blocks (the RB
blocks are those generated from student plans). The dapblockunload script takes in a parameter
of R, RA or RB with RA being the default if no parameter is specified.

The contents of the dap-req-block table are unloaded along with the appropriate dap-next-id-
mst records.

Note: You cannot use the load/unload scripts to copy between two environments on two different
versions of Degree Works.

The tables are unloaded to a tar file in the admin/datac directory. If a tar file name is not specified
then a file with the current date will be used. For example, reqblocks20160317.tar.

• The block columns are unloaded to R*.fields files
• The block text is unloaded to R*.text files.

The dap-next-id-mst records are unloaded to DWNXTMST.dmp and DWNEXTMST_RB_.dmp
files.
All of the files are then combined into one big tar file.

 Degree Works | Technical Guide 5.0.3.1 248

Examples of how to run dapblockunload:

$ dapblockunload # unloads all RA blocks to tar file of current
date
$ dapblockunload R # unloads all blocks to tar file of current date
$ dapblockunload RA # unloads all RA blocks to tar file of current
date
$ dapblockunload RB # unloads all RB blocks to tar file of current
date
$ dapblockunload R myfile.tar # unloads blocks to specified tar file

Using dapblockunload does not remove the blocks from the current environment; they are
merely copied to files.

Copy the files to the new environment
C Copy the .tar file created by dapblockunload into the admin/datac directory in the
environment in which you want to load the requirements. If the environment is on another
machine you will need to FTP the files using BINARY as the transfer type.

Use dapblockload to load the tables relating to Scribe blocks from a tar file into the
database

You can specify that all blocks be loaded, just the RA blocks or just the RB blocks (the RB blocks
are those generated from student plans).

• The first parameter is either R, RA or RB (RA is the default if no parameter is specified).
• The second parameter is the name of the tar file; a tar file name is required.

The current contents of dap-req-block and the R dap-next-id-mst record are copied to
archive/datac as a tar file called reqblockarchive.tar. The contents of dap-req-block, dap-req-
crs-dtl and dap-req-link-dtl are deleted along with the RA and/or RB dap-next-id-mst records.
However, if RA is specified as the parameter only the RA blocks are deleted. If RB is specified
then only the RB blocks are deleted.

 Degree Works | Technical Guide 5.0.3.1 249

The R*.fields and R*.text files from the tar file are then processed to create insert and update sql
commands. The entire set of insert sql statements are first run to create the dap-req-block
records with empty CLOB/text fields. The update sql statements are then run to create the
requirement text data. There will be one insert statement for each line of text in each block so
expect a lot of database updates to occur and expect this to take at least several minutes to run.

The appropriate RA or RB datac files are then imported.

Examples of how to run dapblockunload to load a tar file:

$ dapblockload R myfile.tar # load blocks from tar file in admin/datac
$ dapblockload RA myfile.tar # load blocks from tar file in admin/datac
$ dapblockload RB myfile.tar # load blocks from tar file in admin/datac

Since the dapblockload output is so long you should consider redirecting to a file:
$ dapblockload RA myfile.tar > my.out 2>&1

If you have tee on your system you might consider using it to get the output in the file and to your
screen:

$ dapblockload RA myfile.tar 2>&1 | tee my.out
(Do which tee to confirm you have it installed.)
Once the load finishes you can then examine the contents of my.out to check for errors.

Run DAP16 to reparse your new set of blocks
Once the new blocks are loaded you must use Transit to run DAP16 to reparse all of the blocks.
Be sure to review the DAP16 report to examine any errors found in the parsing process. Fix all
errors found. You may run DAP16 from Transit or may run the dap16all script from the command
line to reparse all of your blocks.

5) Transfer mappings between two different environments
Use dapmapunload to unload tables relating to Transfer Equivalency mappings.

The tables unloaded are dap-mapping-dtl, dap-map-cond-dtl, dap-title-dtl and the M dap-next-id-
mst record. These tables are unloaded to files in the datac directory called DWMAPDTL,
DWCNDDTL, DWTTLDTL, DWNXTMMST, respectively. Using dapmapunload does not remove
the blocks from the current environment; they are merely copied to files.

 Degree Works | Technical Guide 5.0.3.1 250

Copy the files to the new environment.
Copy the three files just extracted into the datac directory in the environment in which you wish to
load the mappings. If the environment is on another machine you will need to FTP the files using
BINARY as the transfer type.

Use dapmapload to load the tables relating to Transfer Equivalency mappings.
The current contents of the dap-mapping-dtl, dap-map-cond-dtl, dap-title-dtl and the M dap-next-
id-mst record are copied to archive/datac. The contents of dap-map-dtl, dap-map-cond-dtl, and
dap-title-dtl are deleted along with the M dap-next-id-mst record. The datac files are then
imported.

Note: You cannot use the load/unload scripts to copy between two environments on two different
versions of Degree Works.

6) Transfer UCX records between two different environments
Note: do not use these scripts to copy the UCX tables between environments that are on different
versions of the Degree Works software. For example, if PROD is on the 4.1.4 release and TEST
is on the 4.1.7 release you should not use these scripts. Some of the tables have entries that are
specific to the software version, such as UCX-SYS935 and others. You can instead use the bulk
options feature in Controller to load/unload a table at a time.

Use dapucxunload to unload the UCX tables
All UCX tables are unloaded and placed in the datac directory in a file called DWUCXALL.tar.gz.
Using dapucxunload does not remove the UCX records from the current environment, they are
merely copied out.

Copy the file to the new environment
Copy the file just extracted into the datac directory in the environment in which you wish to load
the UCX tables. If the environment is on another machine you will need to FTP the file using
BINARY as the transfer type.

Use dapucxload to load the UCX tables
The current contents of the UCX records are copied to archive/datac. The contents of the UCX
are deleted. The contents of the DWUCXALL file are then imported.

7) Delete old student data from your Degree Works database

After bridging students into Degree Works for many years, you may wish to remove inactive
student data from the Degree Works database. You can run the script deletestu to delete
students by bridge date. To run this script, issue the command

deletestu YYYYMMDD

where YYYYMMDD will be used to select students who have been bridged on or before this date.
The script will create a file of the selected student ID’s and store it in the $LOCAL_HOME/sql
directory as deletestu.ids. The “bannerextract deleteid” process will then be run on the
deletestu.ids file, removing these students from the Degree Works database.

If needed, you can edit the deletestu.ids file before the delete process takes place. To do so,
respond with “N” when prompted “Continue?” after the script displays the number of students to
be deleted. This will terminate deletestu, but you may then edit deletestu.ids to modify the student

 Degree Works | Technical Guide 5.0.3.1 251

ID’s to be deleted. After modifying the file, cd out of the local/sql directory (exiting local/sql is
important!) and issue the command

bannerextract deleteid deletestu.ids

Note: Only Banner schools can use the deletestu script.

8) Cloning database from TEST to PRODUCTION
When you are ready to go live with Degree Works you may want to clone the Degree Works
database from your test environment to your production environment. You will need to review
certain Shepherd settings (shp_settings_mst table). These settings should be different between
environments but others may need to be different also based on your setup.

core.security.cas.callbackUrl
core.classicUrl.serverDomain
classicConnector.dap08.port
classicConnector.serverNameOrIp

If you can’t get into Controller to modify these settings you can use the shpsettingsset script to
change the value. For example:
 $ shpsettingsset classicConnector.dap08.port 1934
You may also use shpsettingsshow to view the settings. Simply specify any part of the setting:
 $ shpsettingsshow classicConnector

Please note: do not use these scripts to copy the UCX tables between environments that are on
different versions of the Degree Works software. For example, if PROD is on the 4.1.4 release
and TEST is on the 4.1.6 release you should not use these scripts. Some of the tables have
entries that are specific to the software version, such as UCX-SYS935 and others. You can
instead use tableunload/tableload or the bulk options feature in Controller to load/unload a table
at a time.

Monitoring Service Access
daphits

The daphits command displays the number of times a particular Degree Works service
has been accessed since a given date.

dapreset
The dapreset command resets the access count and date for the Degree Works services.

You can also examine the logdebug/web.log file to see what and when certain requests occurred.
This log file is cleared out whenever the web jobs are restarted.

Also review the webanalyze script in the Performance section; this script can be very helpful in
understanding access.

Maintain Email notification configuration
In Controller go to the Configuration tab and search for “email” to find the email settings.

You may optionally set this email address value to give the address to be used when a user clicks
Reply. If this value is not set, the To address as used as the reply-to address.
 core.notification.fromEmail

 Degree Works | Technical Guide 5.0.3.1 252

You may optinally set a CC email address that is used for all of the processors listed above. This
might be useful for CC’ing the registrar or an office assistant.
 core.notification.ccEmail

Ensure that the SMTP_MAIL_SERVER variable is defined in your environment. If it is not, you
may set it here in dwenv.config. If this is not set to a correctly configured mail server, e-mail
notifications will not work.

Set this to your machine’s mail server if not already set; eg: mailhost.mymachine.edu
export SMTP_MAIL_SERVER=mailhost.mymachine.com

Database Credentials Changes
When you change the database user or password for the configured Degree Works user (see the
DB_LOGIN environment variable) or the SIS database user (see the DB_LOGIN_BANNER or
DB_LOGIN_CLG environment variable) you must configure the new credentials in 3 different
areas.

In all the configurations, an attempt has been made to hide the database passwords as much as
possible. That is, they do not appear unencrypted in files, or in a user’s environment.

Important

This does not prevent a user who is logged onto the server from seeing the plain
password. It is still critical to secure access to the server to only those individuals who
would be authorized to have full access to the database.

Classic Applications
The database connections for the classic software are configured in the file dwenv.config in the
$DGWBASE directory. This file, which is sourced in during the logon process, sets the
DB_LOGIN environment variable. This variable contains the user name (schema) and
connection. For example:

DB_LOGIN="dgwmgr@dwdevl"

export DB_LOGIN

In the above example, “dgwmgr” is the user name and “dwdevl” is the connection name.

The database password is configured using the setdbpasswords command. For example,

setdbpasswords --password mydwpassword --sispassword mysispassword

In the above example, “mydwpassword” is the Degree Works database password associated with

 Degree Works | Technical Guide 5.0.3.1 253

the DB_LOGIN user, and “mysispassword” is the password associated with the SIS password.

Java Tomcat Applications
For the applications which are deployed in a Tomcat instance, the connection information is
stored in the server.xml file. It will look something like the following:

<Resource auth="Container"
 name="DwProdDatasource"
 url="jdbc:oracle:thin:@dbhost.myschool.edu:1521/dwprod"
 username="dgwmgr"
 password="ENC(Smf/7X6r2Eqw2c2YIkCIJw==)"
 defaultAutoCommit="true"
 driverClassName="oracle.jdbc.OracleDriver"
 factory="org.apache.commons.dbcp.BasicDataSourceFactory"
 maxActive="30" maxIdle="10" maxWait="1000"
 testOnBorrow="true"
 testWhileIdle="true"
 timeBetweenEvictionRunsMillis="1800000"
 type="javax.sql.DataSource"
 validationQuery="select * from dual"
 validationQueryTimeout="1"/>

In the above, the “username” field is the user being used by the application to connect to the
database. The “password” is an encrypted string enclosed in “ENC()”. To get the encrypted string,
you should login to the classic environment that uses this database (has the same user) and
issue the following command:

Showdbpasswords

You must have already run the setdbpasswords command, as described above, in that
environment. It will produce the following output (example):

Substitute the following for the DW password in the server.xml datasource and
jdbc.properties files:

ENC(Smf/7X6r2Eqw2c2YIkCIJw==)

Copy the last line into the server.xml file.

Java Applications on the Classic Server
There are a few Java applications that are run on the classic server. These require that the
username and password be configured in a jdbc.properties file in the $ADMIN_HOME/common
directory. Here is an example (abridged):

dw.jdbc.driverClassName=oracle.jdbc.driver.OracleDriver

dw.jdbc.url=jdbc:oracle:thin:@dbhost.myschool.edu:1521/dwprod

 Degree Works | Technical Guide 5.0.3.1 254

dw.jdbc.username=dgwmgr

dw.jdbc.password=ENC(Smf/7X6r2Eqw2c2YIkCIJw==)

This uses the same password string described in the above Tomcat section.

Java Self-contained Web Applications
These Java applications, such as Composer, Gateway, and Transfer Equivalency Self-service,
are not deployed via a Tomcat instance. Instead, they are started with a shell script. Here is an
example (abridged):

export
SPRING_DATASOURCE_URL="jdbc:oracle:thin:@dbhost.myschool.edu:1521/dwprod"

export SPRING_DATASOURCE_USERNAME="dgwmgr"

export SPRING_DATASOURCE_PASSWORD="ENC(Smf/7X6r2Eqw2c2YIkCIJw==)"

export DEPLOY_LOCATION="/u01/dw/webapps"

...

/usr/java/latest/bin/java -jar $DEPLOY_LOCATION/treqss.jar \

> /usr/tomcat/default/logs/startup-treqss.log 2>&1 &

The SPRING_DATASOURCE_PASSWORD variable should contain the same encrypted string
as was described in the above Java Tomcat Applications section.

Customizing Degree Works source code
If you modify any of the standard Degree Works C or Pro*C code you need to place your changes
under the $LOCAL_HOME directory in one or more of the following directories:
../local/src/include
../local/src/c
../local/src/ec

When a build occurs, the script will find and use the version found in these directories and ignore
the version stored under $DGWHOME/src. Subsequent Degree Works updates will place new
versions in $DGWHOME and will not overwrite your custom changes in $LOCAL_HOME. Of
course, you will need to integrate any new changes in each release into your custom versions
and rebuild.

 Degree Works | Technical Guide 5.0.3.1 255

Degree Works Standing Daemons
The following daemons should always be running on the classic server for the Degree Works
software to function properly:

dap08 Scribe sockets listener daemon
dap10 Scribe daemon
web07 Dashboard daemons
transitexecutor.jar Transit Batch Executor

Optionally you may choose to run these daemons:
 dap25 Create CPA results
 rad08 Dynamic Bridge (non-Banner and non-Colleague)
 dap61 Banner pre-requisite checker
 dap62 Banner pre-requisite descriptions

The following jobs can be controlled by using the following scripts which can be entered at the
system prompt. The restart scripts can also be run via Transit. However, if you have multiple
classic servers running the restarts will only occur on the machines where the Transit Batch
Executor is running. If it is running on multiple machines the restart request could go to any of the
machines.

When you have multiple classic servers it is important to know which deamons should be or
should not be run on each server:

dap08/dap10 run on only one classic server
dap25 run on only one classic server
web07 run on one or more servers as needed
rad08 run on one or more servers as needed
dap61/dap62 run on one or more servers as needed
transitexecutor run on one or more servers as needed

webstart
The webstart script uses the dwinit.web script located in $DGWHOME/initd.

The webstart script starts up a utl01 process and tells is to startup a series of web07 child
processes. You control the number of web07 processes that are started by setting this variable in
$DGWBASE/dwenv.config:

DW_WEB07_COUNT

The web07 count is usually a high number like 50 or 100; you will need to test to determine what
works best for your system.

webrestart
Runs webstop followed by webstart.

webstop
This stops the utl01 process with scope=web causing the child web07 processes to also stop.

 Degree Works | Technical Guide 5.0.3.1 256

dapstart
Please see the notes above for webstart. The difference is that dwinit.dap is used and the
variables in dwenv.config that you need to configure are these:

DW_DAP08_COUNT

DW_DAP10_COUNT

The dap08 count must be 1 and the dap10 count is usually 1 but can be higher. However, with
such a small set of users having access to Scribe there is no need to set this higher than 1.

daprestart
Runs dapstop followed by dapstart. Please also see the special notes under webrestart.

dapstop
This stops the utl01 process with scope=dap causing the child dap08 and dap10 processes to
also stop.

radstart
Please see the notes above for webstart. The difference is that dwinit.rad is used and the
variable in dwenv.config that you need to configure is this:

DW_RAD08_COUNT
This should be a low number if you don’t send Degree Works many simultaneous dynamic bridge
requests your system. This can be higher if you have many simultaneous pushes of data. Most
schools do not use rad08.

radrestart
Runs radstop followed by radstart.

radstop
This stops the utl01 process with scope=rad causing the child rad08 processes to also stop.

resstart
Please see the notes above for webstart. The difference is that dwinit.res is used and the
variable in dwenv.config that you need to configure is this:

DW_DAP25_COUNT
This should be a low number if you don’t want Degree Works to spent a lot of resources creating
CPA data for new audits. This can be higher if you can devote sufficient resources to create CPA
data.

 Degree Works | Technical Guide 5.0.3.1 257

resrestart
Runs resstop followed by resstart.

resstop
This stops the utl01 process with scope=res causing the child dap25 processes to also stop.

tbestart
This script starts the transitexecutor.jar running the Transit Batch Executor. This is needed to
allow Transit to launch jobs. This is also needed for the launchjob script to function.

tberestart
Runs tbestop followed by tbestart. Unlike with daprestart and webrestart, you do not need to run
tberestart every night in your cron script.

tbestop
This stops the transitexecutor.jar.

preqstart
Please see the notes above for webstart. The difference is that dwinit.preq is used and the
variables in dwenv.config that you need to configure are these:

DW_DAP61_COUNT

DW_DAP62_COUNT

The dap61 and dap62 count can be higher if you have many requests coming from Banner.
Running preqshow can show if the queue is getting backed up due to not having enough
daemons running.

preqrestart
Runs preqstop followed by preqstart.

preqstop
This stops the utl01 process with scope=preq causing the child dap61 and dap62 processes to
also stop.

 Degree Works | Technical Guide 5.0.3.1 258

Check on Running Jobs
There are some scripts to display the specific daemon processes:

dapshow
This shows the running dap08 and dap10 processes and the parent utl01 process with
scope=dap. Also shown is the status of the message queue used to communicate between the
dap daemons.

$ dapshow
OWNER PID PPID STARTED CPUTIME COMMAND
======== ===== ===== ======== =======
==
dwadmin 9785 1 Mar 7 00:00:00 /dw/dwprod/app/bin/utl01x
db=dwadmin_prod@ scope=dap

dwadmin 9786 9785 Mar 7 00:00:00 dap08x –p7701 db=dwadmin_prod@
dwadmin 9787 9785 Mar 7 00:00:00 dap10x db=dwadmin_prod@

===== Degree Works Message Queue: Key: 603 = 0x25b =====
MsgQ Key MsgId Owner Perms #Bytes #Msgs
0x0000025b 31555591 dwadmin 666 0 0

webshow
This shows the running web07 processes and the parent utl01 process with scope=web. Also
shown is the status of the message queue used to communicate between the web daemons.

$ webshow
OWNER PID PPID STARTED CPUTIME COMMAND
======== ===== ===== ======== =======
==
dwadmin 8785 1 Mar 7 00:00:00 /dw/dwprod/app/bin/utl01x
db=dwadmin_prod@ scope=web

dwadmin 8830 8785 Mar 7 00:00:00 web07x db=dwadmin_prod@
dwadmin 8831 8785 Mar 7 00:00:00 web07x db=dwadmin_prod@
dwadmin 8832 8785 Mar 7 00:00:00 web07x db=dwadmin_prod@

===== Degree Works Web Message Queue: Key: 603 = 0x25b =====
MsgQ Key MsgId Owner Perms #Bytes #Msgs
0x0000025b 31555591 dwadmin 666 0 0

radshow
This shows the running rad08 processes and the parent utl01 process with scope=rad. Note that
the number of rad08 processes running will always be one more than the number specified in
DW_RAD08_COUNT. This is because utl01 always spawns a single rad08 and this rad08 parent
then spawns the number of children specified by DW_RAD08_COUNT. In the example below the
DW_RAD08_COUNT was 3. Note that the -3 is what is passed to the rad08 parent using the –c
parameter.

$ radshow

 Degree Works | Technical Guide 5.0.3.1 259

OWNER PID PPID STARTED CPUTIME COMMAND
======== ===== ===== ======== =======
==
dwadmin 856 1 11:33 00:00:00 /dw/dwprod/app/bin/utl01x
db=dwadmin_prod@ scope=rad

dwadmin 858 856 11:33 00:00:00 rad08x db=dwadmin_prod@ -p8001 -c3
dwadmin 859 858 11:33 00:00:00 rad08x db=dwadmin_prod@ -p8001 -c3
dwadmin 860 858 11:33 00:00:00 rad08x db=dwadmin_prod@ -p8001 -c3
dwadmin 861 858 11:33 00:00:00 rad08x db=dwadmin_prod@ -p8001 -c3

dwadmin 861 858 11:33 00 :00:00 rad08x db=dwadmin_prod@ -p8001 -c3

 Degree Works | Technical Guide 5.0.3.1 260

Degree Works Troubleshooting
The following is an outline of troubleshooting topics. Some are performed by the client, others by
the vendor after receiving information from the client. The purpose of the outline is to inform you
of the issues involved in troubleshooting problems.

I. Troubleshooting a problem
A. Get information
 1. Can the problem be reproduced?
 2. In which environment does the problem occur?
 a. If one account why is it not a problem in the other account?
 b. Is the software or data different?
 3. When did the problem start? After an update? After an electrical storm?
 4. Does this happen for every ID or just this one?
 5. Is this problem urgent?
 6. Obtain a debug file

B. Attempt to reproduce the problem
 1. Attempt in test account
 2. Attempt in live account

C. Focus on one problem at a time

II. Use available tools
A. Browser
 1. Do a View-Source to see what is being sent
 2. Check for localized scripts or web files
 3. Check for older versions

B. SQL
 1. Use database tools to examine the database
 2. Use database tools to modify the database

III. Get a debug file
A. Classic environment – web07

1. Use debugon to turn on debug.
2. Run webrestart

 3. Run a test in the dashboard.
 4. Examine web07.nnnn.xml debug file

A. Classic environment – dap10

1. Use debugon to turn on debug.
2. Run daprestart

 3. Run a test in Scribe – parse or save.
 4. Examine dap10.nnnn.xml debug file

C. Java Applications
 1. Ensure your user has the DEBUG Shepherd key

 Degree Works | Technical Guide 5.0.3.1 261

 2. Enable debugging from the Debug page in the application
 3. Note your Debug Tag
 4. Examine the log file on the application server, searching for your Debug Tag.

Debugon and Debugoff
The debugon alias makes it easier for you to turn on debugging when requested by Ellucian.
Issuing "debugon" works as well as "debugon frog" - the logdebug files created will have "frog" in
their names so that you can easily find the ones that you created. Note that you must do a
webrestart or daprestart within five minutes of issuing the debugon command; this helps prevent
you from leaving debugging turned on accidentally.

The debugoff alias helps to easily turn debugging off again:

$ debugon frog
$ webrestart

 (do some testing on the dashboard)
$ cd logdebug
$ ll *frog.xml - these will be your debug files

$ env | grep DEBUG

DWDEBUG=1

DW_LOGDEBUG_DIR=/dw/dwprod/admin/logdebug

DW_LOGDEBUG_PID=frog

Relaying Information to Support
If it is possible to reproduce the problem take special care to document the steps that you are
taking. Enclose these steps when conveying the information to support. Determine if the problem
encountered is pervasive. Does the error or problem encountered occur in all instances of
running the particular program or performing the specific task. When a specific error message is
relayed from an application it is recommended to include this message. Capturing a screen shot
of the error message displayed is often helpful when analyzing the problem. Often times an error
or message appears in the standard list of the job that was running. Reviewing the standard list
can reveal if there was a warning message or an abort. Copying the section of the log that
contained the error or warning message and relaying this information to the support staff is also
helpful in getting the problem resolved in a timely manner.

Using Available Tools

View Source
If there is a problem regarding the display of information from the Web reports it is recommended
that you first view the source of the display. This is done by “right clicking” on the page in
question and selecting View Source. A text document will display showing the HTML or XML of
the page. Reviewing this information can often times reveal the specific location of the problem.

Special Reports
You should also get used to using the Diagnostics Report on the Worksheets tab. Although it
might be hard to read at first there is a lot of valuable information contained within as to why your
audit turned out the way it did.

 Degree Works | Technical Guide 5.0.3.1 262

You should get used to using the Student Data Report to examine what is stored in the Degree
Works database for the student.

Webtest
The webtest command is often very helpful in identifying a problem with security and access to
the Degree Works applications. At the host command prompt on the classic server, type webtest.
You will be prompted to enter a User ID and User Password. The user’s key ring can then be
displayed. This allows you to view the keys and services that are available to the particular user.
The webtest command also allows you to select a particular service to verify if the user has
access. This is accomplished using the service query option that appears at the end of the
webtest listing of keys. Also available via webtest is the ability to process or view a script.

Weblogon
The weblogon command is often very helpful in identifying a problem with security and access to
the Degree Works applications. You can run it from the command line or run it from Transit’s
ADMIN reports option. Simply supply the user’s logon ID and their list of keys will appear in the
log file for you to examine.

GETXMLAUDIT
Very often while trouble shooting a problem support will request that the XML audit be sent. In
order to extract the xml audit form the database getxmlaudit is used. At the command prompt
type getxmlaudit along with the audit ID number. This will invoke a script that extracts the audit
tree from the dap-audtree-dtl and then will call dapext to create the xml file in the current
directory. The file should be transferred to your PC as ASCII.

$ getxmlaudit AA000123

Version information
Use the dgwversion script to gather information about what versions of the Degree Works
source code is currently in place.

$ dgwversions > verions.txt

Audit debug
Use the dap22dbg script to run and tar up lots of good information on the audit for this student.

$ dap22dbg 123456 mytarfile

Send the tar file created to Ellucian for analysis.

You can also run dap22dbg from Transit using the ADMIN report option. Simply supply a student
ID and launch the job and a tar file will be created for you to download (as binary) and send to the
Action Line on your open case.

 Degree Works | Technical Guide 5.0.3.1 263

Troubleshooting from the PC Applications
Turning on diagnostics mode using Transit tells the classic server software to send process
information to a debug file in the logdebug directory. It will be dap10.xxxx.xml with the x's being
the process ID of the DAP10 daemon running. The application also creates a file in the Tmp
directory on the PC describing each request to and each response from the classic server.

The dap10 xml debug file may be examined to determine why you are unable to save your
changes or why the database cannot be opened.

In most cases this debug file should be sent to the Ellucian support team. Transfer the file to your
PC and attach the file to an email sent to support.

Troubleshooting using the Web Interface
You should review the logdebug/web.log file and use webanalyze to get a summary of the
contents of the live web.log file or an older log file.

fixdebug and debugshow
You may have to run the fixdebug script to allow the xml file to be used against the Logdebug xsl.
Since the web07 process is probably still running the xml file will be missing the end Logdebug
and some end Module tags. The fixdebug script will add whatever is needed so that it becomes a
properly ended xml document.

 $ fixdebug web07.1234.xml

 Degree Works | Technical Guide 5.0.3.1 264

The debugshow script can be used to pull out the xml for a particular module.

 $ debugshow dap41 web07.1234.xml

You can redirect the output to a file or let it display on your screen.

Troubleshooting Java Applications
Debug logging can be enabled from the Dashboard Servlet (including Student Planner and
Transfer Finder), Scribe, Composer and Transfer Equivalency Self-Service user interfaces. If a
user has the DEBUG Shepherd key, they will be able to access the Debug page in the application
and enable debug for their session. For additional information on enabling debug, see the
Composer Administration Guide, Responsive Dashboard Administration Guide, Scribe
Administration Guide, Student Educational Planner Administration Guide, Transfer Equivalency
Self-Service Administration Guide, Transfer Finder Administration Guide, Transit Administration
Guide or Web Interface User Guide.

Backup issues
Backing up the system, especially the data, is a standard procedure performed by the data
processing department. It is recommended that the following issues are addressed by any
backup procedure:

1. Establish backup schedule, with either partial or full backups
 Daily
 Weekly
 Monthly

2. Verify each backup for completion

3. Develop an archive methodology
 frequency of recycling (reuse of backup media)
 location of media (offsite, onsite)

 Degree Works | Technical Guide 5.0.3.1 265

Load Balancing
Load balancing is the technique of creating multiple physical and/or virtual servers that run the
same application. It may be done for performance reasons – allowing you to spread the load to
different network segments. It may also be easier to respond to changing demand levels by adding
or removing servers, thereby optimizing your server resources. It may be done for reliability
reasons, allowing failing systems to be removed from service while not disrupting overall
responsiveness. Many factors go into architecting a load balanced system, and it is not in the scope
of this document to cover them all. Instead, this section discusses the unique aspects of the Degree
Works set of applications as they apply to load balancing.

Degree Works began as a monolithic application that was intended to be run on one server. As it
has evolved, it incorporated newer technologies that lent themselves to load balancing. It is now
possible to load balance most of the Degree Works applications, with some caveats.

The load balancing capabilities of any piece of application code depends on the technology used in
its construction. There are three main categories that are useful in this discussion. The first is the
applications that run daemon processes on a Unix system. Since this is the oldest code in our suite,
we refer to this as our classic applications. The second category are java applications that are
deploy in an application container, such as Tomcat or Weblogic. Finally, there are Java applications
that run standalone, such as Composer or Transfer Equivalency Self-service. These are all
discussed in more detail below.

The nature of the application should also factor into the load balancing design. Administrative
applications such as Controller, Scribe and Composer are used by a limited number of users, even
at large institutions. It may not be desirable to load balance these at all, depending on the objectives
you are trying to meet.

Classic Load Balancing
The classic Degree Works server, which runs the web daemons (started via webstart) use a
RabbitMQ queue to communicate with the Dashboard servlet and other applications. As such, it can
be load balanced with a few caveats.

There are several configuration and localization files still on the classic server. Any changes to
these files must be kept in sync between all the load balanced servers. Examples of these include
dwenv.config. Generally, any time you need to modify a file on one of the classic servers, you must
make those changes to all other servers as well, or copy the files to all the other servers.

Each server will have its own web.log file, so if you use the webanalyze or webstats tools, you will
need to do that on each server, and then combine the results. The webanalyze that you might run
from Transit will only report from the server that the Transit Batch Executor is running.

 Degree Works | Technical Guide 5.0.3.1 266

Containerized Java Application Load Balancing
Generally, load balancing Java applications deployed in Tomcat or Weblogic requires no special
handling. However, these applications require secure (https) connections, so if you plan to
terminate SSL at the load balancer, you must forward the appropriate request headers to our
applications so that they know the original request was secure. This includes “x-forwarded-for”, “x-
forwarded-by”, and “x-forwarded-proto”. How you configure this depends on the load you are using.
Please refer to documentation specific to your technology. On the Tomcat side, you must configure
a valve to interpret these headers. Use the following configuration:

<Valve className="net.hedtech.degreeworks.tomcat.DwRemoteIpValve"
 remoteIpHeader="x-forwarded-for"
 remoteIpProxiesHeader="x-forwarded-by"
 protocolHeader="x-forwarded-proto"
 protocolHeaderHttpsValue="https(,https)*"/>

This uses a special version of the RemoteIpValve that has been created by Ellucian and is based
on the Tomcat RemoteIpValve. In order for this valve to work, you must place the Degree Works
utilities.jar file in the Tomcat lib directory. This jar file can be found in the classic server app/java
directory.

The attributes in the configuration are the same as the Tomcat RemoteIpValve, except that the
protocolHeaderHttpsValue accepts a regular expression instead of an exact matching string. You
may need to configure a value for internalProxies depending on your configuration. Refer to your
Tomcat configuration guide for an explanation on how to do this.

Some of our Java applications are accessed through our Gateway application (UserAPI). The
Gateway serves as a forwarding proxy for the Dashboard, Student Planner, and Transfer Finder
applications. When load balancing any of these applications, make sure that there is a Gateway
application also running on that server, and point it to the localhost URL for those applications. The
load balancer would then point to the Gateway for those applications. See notes below regarding
the Gateway application.

Standalone Java Application Load Balancing
Load balancing the standalone Java applications such as Composer and Transfer Equivalency Self-
service is rather straightforward, as generally nothing special is required. If your load balancing is
terminating the SSL connection, you must add a few additional environment variables to your
startup script:

export SERVER_USE_FORWARD_HEADERS="true"
export SERVER_TOMCAT_PROTOCOL_HEADER="x-forwarded-proto"
export SERVER_TOMCAT_REMOTE_IP_HEADER="x-forwarded-for"
export SERVER_TOMCAT_REMOTE_IP_PROXIES_HEADER="x-forwarded-by"

The Gateway application is itself a proxy application for the Dashboard, and by extension, the
Student Planner and Transfer Finder. It should be placed on each server that has these

 Degree Works | Technical Guide 5.0.3.1 267

applications. It also requires the above additional environment variables if SSL is to be terminated
at the load balancer. Your path URLs to these applications should then reference localhost. Here is
an example:

export INTERNAL_BASE_DASHBOARD="http://localhost:8080"
export INTERNAL_BASE_PLANNER="http://localhost:8080"
export INTERNAL_BASE_FINDER="http://localhost:8080"
export PATH_DASHBOARD="/dashboard/"
export PATH_PLANNER="/planner/"
export PATH_FINDER="/finder/"

This example assumes that the context for the applications is at the root.

 Degree Works | Technical Guide 5.0.3.1 268

System Performance
This section provides information about system performance management, configuration options
to manage performance, and troubleshooting guidelines.

Getting Started
The best time to begin thinking about performance is before performance issues are reported.
You should become familiar with the tools used to monitor performance and collect performance
metrics from your systems at different times of the day and year. Find out how the system
performs during periods of light and heavy usage. When issues occur, you can compare current
metrics against these baselines and that will help you identify the components that are causing
the issue.

Troubleshooting
Define the problem by gathering data about when the issue occurred and the task the user was
trying to accomplish when the issue occurred. Usually users think of "poor performance" as "poor
response time". Check if that is the case, or if the user meant that a batch job takes too long to
run.

Try and determine the programs that were running when the issue occurred. Find out which users
report the issue, and if the issue is constant or intermittent. If response time is defined as the time
from clicking Run Audit to seeing something returned, then find out that duration. Ask your users
to keep a log of the service, ID, time-of-day, and response time whenever the issue occurs.
Ask the user to call you immediately when the issue occurs. You can run some simple
diagnostics to gather system-wide information.

If you suspect an issue with the Degree Works software, call Ellucian and send us the information
you have gathered. Ellucian will work with you to further analyze the problem and, if needed, will
ask you to call your computer hardware vendor.

System Management and Performance
In many ways the performance of Degree Works is linked to your overall system performance. If
your computer is overloaded for other tasks, then it may be overloaded for Degree Works
processes as well. Ellucian and your computer hardware vendor can help you analyze if you have
the right hardware for the tasks you want to perform.

Sufficient disk space and database management often help improve software performance.

Check the available disk space on the system, regularly. Check the degree of fragmentation as
well, if you have only small clusters of disk space, you may need to perform some disk space
maintenance.

 Degree Works | Technical Guide 5.0.3.1 269

Configuring the Database Server
There are several best practices and techniques that DBAs can use to optimize an Oracle
database for best performance. A complete discussion of those is beyond the scope of this
document, this document focuses on those items that apply to Degree Works.
The following configuration parameter is the most important configuration parameter specific to
Degree Works:
cursor_sharing=FORCE

If this parameter is not set, system performance will be adversely affected.

The database character set can be US7ASCII, WE8ISO8859P1 or WE8MSWIN1252. UTF8 is
currently not supported.

Some additional initialization parameters might help with performance of the Degree Works
databases, but optimum values will depend on the RDBMS version and database size; consult
your Oracle documentation. Oracle is largely self tuning, so care should be taken when setting
any non-default values.

The DBA can refer to Oracle performance documentation for more information.

Java Database Pooling Configuration
Java programs obtain a database connection from a pool of open connections. If the pool is too
small, then performance may suffer, and the application may even stop working entirely. The default
size is adequate for a test account but will need to be increased for production. For those
applications deployed into Weblogic, the pools size is controlled on the console page used to set up
the database. For Tomcat deployed applications, the pool size is controlled in server.xml where the
database resource is configured. The most important value to adjust is the maxActive value. The
default is 8, but you will want a larger number for production. Start with 100 and adjust after
monitoring. More information about these settings can be found by searching the internet for
“Apache commons dbcp BasicDatasource settings”.

For microservice applications that start via a script (e.g. Gateway), you can adjust this value by
exporting the dw_datasource_maxActive environment variable. Example

export dw_datasource_maxActive=100

The same attributes you can change in the Tomcat server.xml file can be set in these startup scripts
by exporting environment variables with names beginning with “dw_datasource_” plus the
attribute name (e.g. export dw_datasource_maxIdle=50”.

Monitoring the Database Pool
The database pool exposes metrics via the Java Management Extensions (JMX). There
are many tools that can monitor these metrics. JConsole is a free application that comes
with Java that will display these values. For Tomcat deployed apps, these metrics can
be viewed under the MBean Catalina/DataSource/javax.sql.DataSource. For

 Degree Works | Technical Guide 5.0.3.1 270

microservice apps, they can be viewed under
net.hedtech.degreeworks/JmxBasicDataSource/datasource. There is a getState
operation that will report all the relevant values for the datasource.

Classic Web Performance
Most users will use the Classic Degree Works Web interface. This includes the student portal,
audit worksheets, and what-if audits, among other things.

Degree Works Classic Web Architecture

Almost all requests coming from the browser go through the dashboard servlet. This servlet
passes the request on to the web07 daemon on the classic server via a message queue. Web07
reads the request and validates it. Most of the requests result in the processing of a script (i.e.
Web page). In addition, many scripts invoke business logic based on embedded tags. Web07
composes the page and sends the page back to the dashboard servlet, which in turn sends it
back to the user’s browser.
There are a number of potential choke points in this process. You need to know how to monitor
the system and determine where a performance issue originates from.

 Degree Works | Technical Guide 5.0.3.1 271

Useful Tools for Analyzing Web Performance

webanalyze
Webanalyze is primarily a post-mortem tool to check to see how the system performed during the
period covered by a web.log file. You can run webanalyze against your current web.log file or
against a saved file. When webanalyze is run against an active web.log, it also displays
information about the number of web07 daemons that are still running compared to the number
you initiated. However, this number should always match since utl01 creates a new web07
process if one dies. The average time for all web07 requests is also displayed, allowing you to
see if performance is getting better or worse over the day’s activities.
You can e-mail the results of webanalyze, a useful feature when setting it up in cron to run on a
daily or hourly basis. A quick check of the webanalyze results in an e-mail is a simple way to
monitor system performance.
You can also run webanalyze by navigating to ADMIN in Transit and selecting webanalyze. The
webanalyze results are also available on the Web under the Admin tab.

webtime
Webtime is a tool that provides information about the number of transactions.You can run
webtime against your current web.log file or an older, saved web.log file.
$ webtime

$ webtime myold.web.log

The output provides the time it took for each request and the slowest, fastest and average times.
See the sections that follow for more information.

webstats
This is a tool to produce statistics on the performance of the web daemons by analyzing the
web.log file. Its primary purpose is to produce a data file containing a time series of web server
metrics. This includes the periodic measurements of the average transaction duration and
maximum transaction count for web07. The comma-delimited file can be input into a spreadsheet
or other statistical program for further analysis and graphing.
The tool can be run without any parameters to analyze your web.log file. However, you can
specify the file as a parameter if you have saved it under a different name. For example:

webstats web.log.20140301

A summary report is printed to the screen:

Web log file: web.log.20140301 (3844198 lines)

Generated data file: webstats.csv

Number of web07s started = 50

SUMMARY:

Process Total Avg Max

WEB07 2003274 0.2605 50

It displays the number of daemons originally started at the beginning of the report. It then gives,
for each of the servers, the total number of transactions processed (Total), the average duration

 Degree Works | Technical Guide 5.0.3.1 272

for a transaction (Avg), and the Maximum number of concurrent transaction (Max) count. The
Max count is the maximum number of concurrent transactions occurring at the same time that
were found for the server. For example, the summary above shows that, at some point covered
by the web.log file, there were 235 WEB08 processes processing transactions.

The data file is called webstats.csv, and contains a series of snapshots at regular 1 minute
intervals. Each snapshot contains a timestamp, an elapsed time, and for web07, an average
duration of its transactions and the maximum concurrent transaction (Max) count in that period.
The average and maximum are calculated for a 5 minute period surrounding the snapshot time.
For example, the webstats.csv file might contain the following entries:

"01:54:00",840,0.148393,50

"01:54:10",850,0.147676,50

"01:54:20",860,0.145578,50

"01:54:30",870,0.144776,50

"01:54:40",880,0.149042,50

At 1:54 (row 1, 1st column), 840 seconds since the start of the log (2nd column), the average
duration for a web07 transaction was 0.148393 seconds (3rd column) and there was at most 50
web07 daemons running in that time period (4th column), which lasted from 1:54:00 to 1:54:10.
The numbers in the file are moving counts and averages. That means that a record is output
every so often, at the value of the interval, by default 1 minute. The average and counts,
however, are taken from transactions that occur in a window around that point. The window can
be, and by default (5 minutes) is, larger than the interval. So, while we may be outputting records
every minute, it will include, by default, the average duration of transactions occurring 2.5 minutes
before to 2.5 minutes after that point.
The interval between snapshots can be changed using the --interval option, and the size of the
period can be changed with the --window option. Both take parameters in seconds. The name of
the data file can be changed with the --datafile option.

webstats --interval=120 --window=600 --datafile mydata.txt

This would produce a snapshot every 2 minutes, and each snapshot would cover a 10 minute
period centered on the snapshot. The first line of the file contains a heading entry.
The starting point for the first entry is calculated to put it on an even multiple of the interval and to
include a full window of transactions, and the last entry is also calculated to contain only a full
window. This means that there will be some transactions at the beginning and end that will not be
included in the data. This is to prevent outlying data points at the beginning and end.
The following figures are examples of some graphs that can be produced from the file:

 Degree Works | Technical Guide 5.0.3.1 273

Figure 1 Server Counts by Time

The above graph shows the count values (Cnt heading) from the data file plotted against the
timestamp (Time). The graph below shows the average transaction duration (Avg heading)
plotted against the timestamp.

Figure 2 Average Transaction Time by Time

You can see in the examples above that there was a period where web07 transaction time spiked
dramatically. You should check the cpu usage during this time. Also look at the counts for web07.
If they are approaching the configured maximums then you may want to increase that, so long as
you have cpu overhead.

top and vmstat
Top, or a similar tool, is provided on most UNIX systems. It monitors the overall performance of
the machine and lists the processes that are using the most CPU resources. Another common

0

5

10

15

20
9:

09
:4

0
9:

15
:1

0
9:

20
:4

0
9:

26
:1

0
9:

31
:4

0
9:

37
:1

0
9:

42
:4

0
9:

48
:1

0
9:

53
:4

0
9:

59
:1

0
10

:0
4:

40
10

:1
0:

10
10

:1
5:

40
10

:2
1:

10
10

:2
6:

40
10

:3
2:

10
10

:3
7:

40
10

:4
3:

10
10

:4
8:

40
10

:5
4:

10
11

:0
1:

00
11

:0
6:

30
11

:1
2:

00
11

:1
7:

30
11

:2
3:

00
11

:2
8:

30
11

:3
4:

00
11

:3
9:

30
11

:4
5:

00
11

:5
0:

30
11

:5
6:

00
12

:0
1:

30

Web07 Cnt

Web07 Cnt

0

0.5

1

1.5

2

2.5

3

9:
09

:4
0

9:
15

:2
0

9:
21

:0
0

9:
26

:4
0

9:
32

:2
0

9:
38

:0
0

9:
43

:4
0

9:
49

:2
0

9:
55

:0
0

10
:0

0:
40

10
:0

6:
20

10
:1

2:
00

10
:1

7:
40

10
:2

3:
20

10
:2

9:
00

10
:3

4:
40

10
:4

0:
20

10
:4

6:
00

10
:5

1:
40

10
:5

8:
40

11
:0

4:
20

11
:1

0:
00

11
:1

5:
40

11
:2

1:
20

11
:2

7:
00

11
:3

2:
40

11
:3

8:
20

11
:4

4:
00

11
:4

9:
40

11
:5

5:
20

12
:0

1:
00

Web07 Avg

Web07 Avg

 Degree Works | Technical Guide 5.0.3.1 274

UNIX tool is vmstat, which will also provide the total statistics on CPU usage. When the Classic
application server’s CPU is fully utilized, configuration changes in the number of Degree Works
servers will not improve performance. However, if the CPU is not fully utilized, you may be able to
increase performance by increasing one or more of the Degree Works web server daemon
counts.

Configuring the Degree Works Web Server Daemons
The primary configurations for the Degree Works daemons are the instance counts for the
various daemons. There is only one daemon that can be configured: web07. The number of these
is controlled by this environment variables in dwenv.config:
 DW_WEB07_COUNT

There is no formula for setting this configuration. Too few servers will choke off responses to
requests. Too many will use up system resources (memory, process space).
You can use the webtime script to analyze a web.log script to determine how many requests were
handled during the time period covered by the log. There are no exact guidelines for the number
of web07 daemons. Try different values for this parameter and check if it has any impact on
performance.
If you have under-configured these settings, your response times will suffer, yet neither the
Degree Works classic server, the application server, nor the database server will be taxed.
The web performance is significantly affected by a refresh and/or audit. Normally, a student will
simply view audits that have previously been calculated, generally during the last student extract
batch run. However, there are settings that can be enabled which would cause new refreshes and
audits to be generated. These are set in the UCX-CFG020 REFRESH record. Be careful with
these settings since they have a very significant effect on performance. For similar reasons, what-
if audits can also have an impact on performance.
There are also several operating system parameters that may limit the number of servers that can
be run. The ulimit command lists the important ones:

$ ulimit -aS

time(cpu-seconds) unlimited

file(blocks) unlimited

coredump(blocks) 0

data(kbytes) unlimited

stack(kbytes) 10240

lockedmem(kbytes) 32

memory(kbytes) unlimited

nofiles(descriptors) 4096

processes 77824

$ ulimit -aH

time(cpu-seconds) unlimited

file(blocks) unlimited

coredump(blocks) unlimited

data(kbytes) unlimited

stack(kbytes) unlimited

lockedmem(kbytes) 32

memory(kbytes) unlimited

 Degree Works | Technical Guide 5.0.3.1 275

nofiles(descriptors) 4096

processes 77824

The first example details the soft limits (ulimit –aS), which can be changed for any particular
session, and the second example (ulimit –aH) details the hard limits, which can only be
changed by the system manager. The commands may be slightly different on your system, as
may the means to set the limits and the defaults. The limits of particular concern are the nofiles
and processes values. The nofiles value limits the number of open files, and the processes
value limits the number of running processes. As these limits were meant primarily to prevent
“runaway” processes from consuming the entire machine, there is little negative impact in making
them very large. If they are too small you may see error messages in your log files, such as “Too
many open files” or “Too many processes”. You may also notice that you do not have as many
servers running as you configured. On most systems, a nofiles setting of 4096 and processes
setting of 77824 should be sufficient.
Since Degree Works uses message queues significantly, the operating system (kernel)
parameters concerning message queues may also need to be adjusted. The recommended
values in the Degree Works Pre-Installation Checklist should be sufficient for most systems. If
they are too small, you may see messages such as “Out of space on device” or “Failed to write to
message queue”.

Batch Processing Performance
The primary configuration used to adjust batch performance is the transit.*.workerCount settings.
If the batch job is running on the classic server, setting this variable to more than the CPU count
can decrease the overall time to completion. You will need to test to determine the optimal setting
for your environment for each job.

When running the resstart to build CPA results the DW_DAP25_COUNT variable from
dwenv.config must be 1 since only a single dap25 parent can be created. However, the
DAP25_NEW_AUDIT_MAX and the DAP25_AUDITS_PER_CHILD controls the maximum
number new audits that will be processed together and how many audits will be assigned to each
spawned dap25 child process. The number of child processes spawned is based on these two
settings. For example, if the max is set to 1,000 and the per-child is 100 then 10 child processes
will be spawned; each child will handle 100 audits. You may need to alter these settings if you are
finding that the building of CPA results is taking too long.

Another factor that can significantly affect the building of CPA results is the flag settings
in the UCX-CFG020 RESULTS record. Each flag set to “Y” will increase the time it takes
to process a student. You should only turn on those flags for data that you will be using.

Custom Indexes
When you create your own indexes into the Degree Works database tables you cannot create
indexes with names longer than 21 characters as they are not supported.

	Notices
	Introduction
	Document Organization
	Overview
	Degree Requirements
	Auditor Engine
	Output Engine
	Scribe
	Transfer Equivalency
	Transit
	Degree Works Dashboard
	Curriculum Planning Assistant
	Controller

	Glossary
	Special Topics
	Adding Custom Data Items
	Adding NonCourse Data Items
	Additional Advisee Filtering
	Overview
	Services Affected
	Setup Procedure

	Degree Works Bridge
	Static Bridge
	Dynamic Refresh

	Equivalent Course Tracking
	Equivalent Course Tracking: Standard Setup
	UCX-CFG070 Equivalence Course Records
	Processing Equivalences into Scribed courses
	Processing Cross-Listings into Scribed courses

	Financial Aid Audit
	Financial Aid Scribe Words
	HEADER examples
	RULE examples
	Data Structures for the Financial Aid Audit

	Athletic Eligibility Audit
	CreditsAppliedTowardsDegree
	Completed Term Count
	Remedial Credits in First Year
	First Year Earned Credits

	Transfer Student-Athletes
	Football Rule
	Batch Audits
	Athletic Eligibility Scribe Words
	RULE examples
	Data Structures for the Athletic Eligibility Audit

	Freezing Audits
	GPA Calculations
	Redemption Algorithm
	Fall-through Redemption
	Nonexclusive Redemption

	Too Many Classes on a Rule
	Match Level
	Fit Rank
	Group Procesing
	Removing classes when too many fit on a rule
	Evaluating Classes on a Rule
	In-progress vs Completed
	Logging Degree Works Errors
	Multi-entity Processing
	Case Study as Example
	RAD tables
	DAP tables
	Transit tables
	How table sharing is accomplished

	Creating the database tables
	Integrated Interface for Banner (Banner Student System sites only)
	Web access
	List of tables used in Degree Works

	Percent Complete Calculation
	Rule Completeness
	Course Rule
	Noncourse Rule
	Subset Rule
	Group Rule
	Block and Blocktype Rule

	Block Completeness
	Overall Audit Completeness
	Output Options

	Repeated Classes
	SOC Report Format
	Degree Works Dashboard
	Sources of Data
	Report Header Data
	Credit Hour Awarded Data
	Scribe changes needed – “SOC” RuleTags
	SOC_CATALOG - SOC Course Catalog Number
	SOC_LABEL - SOC Course Title
	SOC_ADVICE - SOC advice
	SOC_CREDITS - SOC Requirement Credits
	Total Credits Required

	Screenshot Illustrations – SOC DNS Student Agreement
	Header
	SOC Degree Network System Program – SOCAGREEMENT
	Degree Type - SOCDEGTYPE
	Privacy Statement
	Form Text
	Home College Information
	Pertinent Demographic Information
	Approving Authority Information
	Miscellaneous

	Body
	Degree Requirements
	Credit Hours Awarded, Needed and Course Category
	SOC DNS Course Category Code
	Credit Hours Awarded
	Resident
	TOTALS
	Footer

	Setup Summary
	Shepherd security keys for SOC
	Audit notes
	Scribe notes
	Student Data
	UCX Tables
	Stylesheet settings

	Split Credits
	Syntax
	Auditor Engine
	Class Count
	Exclusivity
	Multiple Splits
	Output
	GPA
	Split Power
	Other Qualifiers
	Best Fit
	Fall-Through
	Over-The-Limit
	Fall-Through Split
	Multiple Split Qualifiers

	Transfer Courses

	Web Interface - Tool and Audits
	Overview
	Degree Works Web Localizations
	Introduction
	Section Organization
	Terms and Definitions
	DashboardServlet File List
	Web Interface
	Web Interface – Header
	Miscellaneous Setup Files
	Miscellaneous Configurations
	Localizing Worksheets
	Special Topic: Reintegrating Localizations
	Special Topic: Shepherd Scripts
	Using UCX-SCR001 Literals in the Web Interface
	Additional Custom Search Items

	What-if Configuration
	Curriculum Rules mode details
	Concentrations tied to Majors
	Majors requiring Concentrations
	One Major per Rule
	Auto-selecting picklists
	Disabling empty picklists
	Program driving curriculum rule
	Program as Degree
	Degree drives College
	Additional areas of study

	Course Link
	Configuration Options
	TITLE – (UCX-RPT050)
	ATTRIBUTE – (UCX-RPT052)
	SECTIONS – (UCX-RPT054)
	TRANSFER – (UCX-RPT056)

	Showing Title/Credits as Hint
	Financial Aid Audits
	Exception Management
	Exception Types
	ALSO ALLOW
	APPLY HERE
	REPLACE REQUIREMENT (Substitution)
	NOT NEEDED (Remove course)
	FORCE COMPLETION
	REMOVE COURSE & CHANGE THE LIMIT
	Cascading Exceptions

	Degree Works Accessibility Compliance (Section 508, ADA and WCAG)
	Web Server Components
	Other Configuration Options
	Leepfrog
	CourseLeaf

	u.select from redLantern
	Degree Works support of u.select Articulation/Audit request

	Database Tables
	Introduction
	dap Tables
	rad Tables
	shp Tables
	sep Tables
	Transit Tables

	Special Scripts
	List of Scripts used by Degree Works
	changepassword
	convertplans
	converttemplates
	dapauditstopdffiles
	dapauditstoxmlfiles
	dapauditstoxml
	dapblockinsert
	dapfindbadaudits
	dapfindorphanedaudits
	dapmapcopy
	dbbuild
	dwsettings
	getxmlaudit
	launchjob
	packdebug
	profiledbg
	sharegen
	shareinfo

	Degree Works Security Options
	HTTPS/SSL
	Authentication
	Multiple paths to Authentication
	Degree Works Native Login
	Shepherd User Database

	LDAP User Database
	Locating Degree Works ID within LDAP

	CAS Single Sign-On
	Functionality
	CAS installation and setup
	Configuring Degree Works for CAS
	Step 1 - Configure the Degree Works Banner Extract
	Step 2 - Configure a CAS service for Degree Works
	Step 3 - Export the CAS SSL certificate
	Step 4 - Configure Degree Works for CAS support

	SAML Single Sign On
	Configuring SAML

	External Access Manager
	Shepherd Settings configuration

	Self Service Banner Single Sign-On
	Luminis Single Sign-On

	Multiple Authentication Entry Points
	Authentication is Persistent for a session

	Access Control (Authorization)
	Assigning keys with SHPCFG
	Keys/Keyrings
	Explicit Assignment
	Implicit Assignment

	Maintaining SHPCFG
	Services
	List of Services and associated Keys

	Groups
	List of standard Groups and associated Keys

	Users
	User Class
	Creating a new User Class
	Granting User Access to Degree Works
	Granting access to Scribe
	Granting access to Transfer Equivalency
	Granting access to Controller
	Granting access to Transit
	Granting access to the Dashboard
	Granting access to Web Notes
	Granting access to see Advisees’ records

	Database Privileges
	Encrypted Data

	System Administration
	Degree Works Flow Diagram
	Degree Works Web Applications
	Request-Response Flow through the Java Application Server and Classic Server
	Request-Response Flow through the Java Application Server
	Request-Response Flow through Transit
	RabbitMQ

	Degree Works and Your Student Data
	Request-Response Flow
	Bridge Method #1 – batch loading of student and other data on a nightly basis
	Bridge Method #2 – used for dynamically sending data for one student

	Maintaining Degree Works
	Restarting Applications
	Cron setup for Degree Works
	After System Failure
	OS change or recompiling in 64-bit
	Daily Tasks
	Monthly Tasks
	Semi-Yearly/Yearly Tasks
	Patching Code between Releases
	As Needed Tasks
	Miscellaneous
	1) Process Degree Works updates
	2) Add Degree Works users
	3) Transfer blocks between two different environments
	5) Transfer mappings between two different environments
	6) Transfer UCX records between two different environments
	7) Delete old student data from your Degree Works database
	8) Cloning database from TEST to PRODUCTION

	Monitoring Service Access
	Maintain Email notification configuration
	Database Credentials Changes
	Classic Applications
	Java Tomcat Applications
	Java Applications on the Classic Server
	Java Self-contained Web Applications

	Customizing Degree Works source code
	Degree Works Standing Daemons
	webstart
	webrestart
	webstop
	dapstart
	daprestart
	dapstop
	radstart
	radrestart
	radstop
	resstart
	resrestart
	resstop
	tbestart
	tberestart
	tbestop
	preqstart
	preqrestart
	preqstop

	Check on Running Jobs
	dapshow
	webshow
	radshow

	Degree Works Troubleshooting
	I. Troubleshooting a problem
	II. Use available tools
	III. Get a debug file
	Debugon and Debugoff

	Relaying Information to Support
	Using Available Tools
	View Source
	Special Reports
	Webtest
	Weblogon
	GETXMLAUDIT
	Version information
	Audit debug

	Troubleshooting from the PC Applications
	Troubleshooting using the Web Interface
	fixdebug and debugshow

	Troubleshooting Java Applications

	Backup issues

	Load Balancing
	Classic Load Balancing
	Containerized Java Application Load Balancing
	Standalone Java Application Load Balancing

	System Performance
	Getting Started
	Troubleshooting
	System Management and Performance
	Configuring the Database Server
	Java Database Pooling Configuration
	Monitoring the Database Pool

	Classic Web Performance
	Degree Works Classic Web Architecture
	Useful Tools for Analyzing Web Performance
	webanalyze
	webtime
	webstats
	top and vmstat

	Configuring the Degree Works Web Server Daemons

	Batch Processing Performance
	Custom Indexes

